{"created":"2023-06-19T10:43:56.507177+00:00","id":4294,"links":{},"metadata":{"_buckets":{"deposit":"c9735d16-1a26-42a1-a7f2-69c43f0fb152"},"_deposit":{"created_by":11,"id":"4294","owners":[11],"pid":{"revision_id":0,"type":"depid","value":"4294"},"status":"published"},"_oai":{"id":"oai:shiga-med.repo.nii.ac.jp:00004294","sets":["19:287:288"]},"author_link":["8406","8405","539","9078"],"item_4_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2021-10-14","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicVolumeNumber":"13","bibliographic_titles":[{},{"bibliographic_title":"Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring","bibliographic_titleLang":"en"}]}]},"item_4_creator_3":{"attribute_name":"著者別名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"椎野, 顯彦"}],"nameIdentifiers":[{"nameIdentifier":"539","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"50215935","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=50215935"},{"nameIdentifier":"0000-0001-6203-9339","nameIdentifierScheme":"ORCID","nameIdentifierURI":"https://orcid.org/0000-0001-6203-9339"}]}]},"item_4_description_14":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"pdf","subitem_description_type":"Other"}]},"item_4_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Introduction:\nWe developed machine learning (ML) designed to analyze structural brain magnetic resonance imaging (MRI), and trained it on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. In this study, we verified its utility in the Japanese population. ","subitem_description_type":"Abstract"},{"subitem_description":"Methods:\nA total of 535 participants were enrolled from the Japanese ADNI database, including 148 AD, 152 normal, and 235 mild cognitive impairment (MCI). Probability of AD was expressed as AD likelihood scores (ADLS). ","subitem_description_type":"Abstract"},{"subitem_description":"Results:\nThe accuracy of AD diagnosis was 88.0% to 91.2%. The accuracy of predicting the disease progression in non-dementia participants over a 3-year observation was 76.0% to 79.3%. More than 90% of the participants with low ADLS did not progress to AD within 3 years. In the amyloid positron emission tomography (PET)-positive MCI, the hazard ratio of progression was 2.39 with low ADLS, and 5.77 with high ADLS. When high ADLS was defined as N+ and Pittsburgh compound B (PiB) PET positivity was defined as A+, the time to disease progression for 50% of MCI participants was 23.7 months in A+N+, whereas it was 52.3 months in A+N-. ","subitem_description_type":"Abstract"},{"subitem_description":"Conclusion:\nThese results support the feasibility of our ML for the diagnosis of AD and prediction of the disease progression. ","subitem_description_type":"Abstract"}]},"item_4_description_42":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"subitem_description":"Journal Article","subitem_description_type":"Other"}]},"item_4_publisher_32":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"John Wiley and Sons Inc"}]},"item_4_relation_10":{"attribute_name":"PubMed番号","attribute_value_mlt":[{"subitem_relation_type":"isIdenticalTo","subitem_relation_type_id":{"subitem_relation_type_id_text":"34692983","subitem_relation_type_select":"PMID"}}]},"item_4_relation_11":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"10.1002/dad2.12246"}],"subitem_relation_type":"isIdenticalTo","subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1002/dad2.12246","subitem_relation_type_select":"DOI"}}]},"item_4_relation_13":{"attribute_name":"PMCID","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"PMC8515359"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8515359/","subitem_relation_type_select":"URI"}}]},"item_4_rights_12":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"© 2021 The Authors."},{"subitem_rights":"Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. "}]},"item_4_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2352-8729","subitem_source_identifier_type":"ISSN"}]},"item_4_version_type_15":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"SHIINO, Akihiko"}],"nameIdentifiers":[{"nameIdentifier":"539","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"50215935","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=50215935"},{"nameIdentifier":"0000-0001-6203-9339","nameIdentifierScheme":"ORCID","nameIdentifierURI":"https://orcid.org/0000-0001-6203-9339"}]},{"creatorNames":[{"creatorName":"SHIRAKASHI, Yoshitomo"}],"nameIdentifiers":[{"nameIdentifier":"9078","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"ISHIDA, Manabu"}],"nameIdentifiers":[{"nameIdentifier":"8405","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"TANIGAKI, Kenji"}],"nameIdentifiers":[{"nameIdentifier":"8406","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"70362473","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=70362473"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2022-07-21"}],"displaytype":"detail","filename":"dad2.12246.pdf","filesize":[{"value":"619.6 kB"}],"format":"application/pdf","license_note":"This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations aremade.","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"dad2.12246","url":"https://shiga-med.repo.nii.ac.jp/record/4294/files/dad2.12246.pdf"},"version_id":"26657b46-435e-42c0-9b87-81c68ba99e1e"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"ADNI","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Alzheimer's disease","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"artificial intelligence","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"machine learning","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"MRI","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Machine learning of brain structural biomarkers for Alzheimer's disease (AD) diagnosis, prediction of disease progression, and amyloid beta deposition in the Japanese population","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Machine learning of brain structural biomarkers for Alzheimer's disease (AD) diagnosis, prediction of disease progression, and amyloid beta deposition in the Japanese population"}]},"item_type_id":"4","owner":"11","path":["288"],"pubdate":{"attribute_name":"公開日","attribute_value":"2022-07-21"},"publish_date":"2022-07-21","publish_status":"0","recid":"4294","relation_version_is_last":true,"title":["Machine learning of brain structural biomarkers for Alzheimer's disease (AD) diagnosis, prediction of disease progression, and amyloid beta deposition in the Japanese population"],"weko_creator_id":"11","weko_shared_id":-1},"updated":"2023-06-19T11:12:17.897481+00:00"}