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Abstract. This paper presents some results of the research work aiming to find out a method

to decompose a dioxin-like compound. As a model, 4-chlorodiphenylether was chosen. Ultrasound

energy in combination with Raney Ni catalyst was employed for this research. The best conver-

sion of 4-chloro-diphenylether (>95%) was achieved for 20 kHz at 60 -C and O.lg Raney Ni.

This combination of ultrasound and a catalyst is a promising one as a possible technique for

dioxin decontamination.
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INTRODUCTION

Environmental pollution caused by chlorinated organic compounds is one of the most acute

problems of our century. Chlorinated pollutants with different structures and molecular weights,

ranging from organic solvents up to chlorophenols, PCBs and dioxms have been detected in the

atmosphere as well as in soil and water [lj.

Chemical reactions in ultrasonic field are the consequence of extreme conditions generated by

the collapse of cavitational bubbles. During the collapse, high temperature (-5000 K) and

pressure (-1000 atm) are generated and these conditions lead to pyrolysis of almost all molecules

that enter the bubble [2].

Efforts were done to use the power of ultrasound for degradation of chlorinated compounds.

A wide range of chlorinated organic substances was subjected to ultrasound action with the

hope of total degradation. Studies were carried out on the sonochemical destruction of carbon

tetrachloride [3,4,5,6,7], chloroform [6,7,8,9] , methylene chloride [9] , 1,2-dichloroethane [9,10,

11] , 1,1,2,2-tetrachloroethane [10] , trichloroethane [11], trichloroethylene [6,7,9,10,12,13], tetra-

chloroethylene [6,9,10] , chlorofluorocarbons [14], chlorobenzene [10,13,14], bromobenzene [15,16],

o-chlorotoluene [17] , polycyclic aromatic hydrocarbons [18,19,20] , o, m, and p-chlorophenols

[21] , 2,4,6-trichlorophenol [22] , pentachlorophenol [23,24,25] , pentachlorophenolate [25] , etc.

Among pollutants one of the most dangerous and difficult to be destroyed is the class dioxins

with general formula:
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n+m-l,2,-8

dioxins

The present study is focused to the sonochemical decomposition of dioxin type molecules, and

as model the 4-chlorodiphenylether (CDPE) was chosen:

cl」訂o唱
Examining this model one can see that the O, aromatic ring and Cl sequence is similar to

some dioxms and therefore its behavior under ultrasonic field could be extended to real dioxin

molecules.

EXPERIMENTAL

Apparatus:

Three kinds of ultrasonic equipments were used in this study:

1). 20 kHz Sonicator XL2020 Heat System, 500 W, operated at 20% of power output; tip

area - 0.877 cm2 (direct immersion type);

2). 200 kHz multiwave ultrasonic generator Kaijo, TA 4021; 200W input power, oscillator

diameter - 65 mm (bath type);

3). 35 kHz Transonic T420 cleaning bath, 45 W total power.

A Shimadzu GC-14A gas chromatograph with a 2 m long, 4 mm diameter, PEG 20M (5%)

column was employed for analysis.

Materials:

Raney Ni and 4-chlorodipheylether were purchased from Wako;

Procedure:

4-Chlorodiphenylether (CDPE) was dissolved in methanol. Raney Ni and aqueous NaOH solu-

tion (1.5 g/L) were mixed for 2-3 minutes, then CDPE in methanol was added. The final con-

centrations of CDPE were 2505, 228 and 33 ppm. Raney Ni used in each experiment was 0.1 g.

The concentration of NaOH was 37.5 mmol/L. In each case sonication was performed for 2

hours at 40 ℃. One experiment was also run at 60　C.

After somcation the organic materials were extracted with methylene chloride, then the aque一

cms laver was acidified and extracted again. The organic extracts were combined and evaporat-

ed to 1-5 cm. The residue was analyzed by gas chromatography using tetradecane as an inter-
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nal standard.

RESULTS AND DISCUSSION

For the 40 ℃ experiments ′with different equipments and initial concentrations of CDPE, and

0.1 g Raney Ni, the results are given in Tables 1-3. The figures are shown in mass percent.

Tablel.

20 kHz CDPE PhtO-Ph PhtOH cyclohexanol

2505 ppm 37 41 1.5

228 ppm 90

33 ppm 73

Table 2.

200 kH z CD PE Ph-O -Ph Ph-O H cyclohexanol

2505 ppm 77

228 ppm 19 45 25

33 ppm 86

Table 3.

35 kH z CD PE Ph-0 -Ph Ph-O H cyclohexanol

2505 ppm 64 24

228 ppm 40 32 28

33 ppm 90

For 60 ℃ experiments at different frequencies and initial concentration of CDPE of 2505

ppm and O.lg Raney Ni, the results are given in Table 4.

Table 4.

2505 ppm CD PE Ph-0 -Ph Ph-O H cyclohexanol

20 kH z 3.5 30 21

200 kH z 26 51 27

35 kH z 70 16 12

For comparison, the silent reaction by replacing ultrasonic energy with a magnetic stirrer

was performed using similar conditions as for sonochemical reaction. The results of silent reac-

tion are given in Table 5.

-17-



Stavrescu R., Kimura T., Fujita M., Sohmiya H., Ando T., Vinatoru M.*

Table 5.

Silent CD PE Ph一0 -Ph Ph-O H cyclohexanol

2505 ppm 71 11 1.8

228 ppm 45 28 24 0.6

35 ppm 84 0.4

Almost all sonochemical reactions occur inside the cavitation or surrounding shell of bubbles,

or are originated here. The cavitation bubble contains mainly the solvent vapor as well as dis-

solved gas and reagents. The more volatile the reagents dissolved in the solvent are, the higher

is their concentration inside the bubble. Even in the case of low volatility there is some reagent

inside the bubble.

Examining the results from the Tables, one can see that at 40℃ and higher concentration of

CDPE (2505 ppm) the most effective process occurs at low frequency. Even in the case of a

cleaning bath that has low power (-1 W) the advancement of degradation of CDPE is better

than at 200 kHz.

However, the decomposition reaction of CDPE occurs even in the absence of ultrasonic field,

showing that Raney Ni catalyst promotes the hydrogenolysis of the chloroderivative. Special

attention deserves the reactions performed at 60 ℃, when the hydrogenation process becomes

important, proving that the inside cavitation reaction increases with the volatility.

It is reasonable to interpret these results by the fact that the decomposition reaction of CDPE

takes place inside cavitation bubbles, in the surrounding shell as well as the bulk liquid.

Taking into account that CDPE is a rather nonvolatile compound its concentration inside bub-

bles is low.

surrounding shell

cavitati on bubble

Zones of higher concentration during cavitation

Indeed, if the initial concentration is high and only a limited number of molecules enter cav-

itation, the ratio of entered/total CDPE's molecules is very small. By contrast, at lower con-

centration the number of entered molecules is similar or almost similar, but the total number

is smaller, leading to a greater ratio. This fact is well described by the behavior of CDPE

at 200 kHz and 228 ppm, when both processes inside and outside bubbles occur simultaneously.

The result is a better decomposition of the starting material. This means that for higher con-

centration of CDPE two reactions took place: sonochemical decomposition and hydrogenolysis

in bulk liquid.
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Further lowering the initial concentration leads to less and less molecules entering the cavi-

tation and, therefore, a diminished reaction inside cavitation. In the same time the surrounding

shell has lower CDPE concentration and therefore the reaction in both these regions is dimin-

ished. The overall effect is lower conversion of CDPE into harmless compounds.

An argument in favor of the above allegations is the result from the 60 ℃ experiments. In-

deed, when the temperature rises, the volatility of CDPE increases and the amount of molecules

entering cavitation increases too. This enhances the inside bubble reaction as well as the inter-

face one. Cyclohexanol is produced in the largest percent in this experiment, demonstrating

that inside cavitation the bond cleavage is followed by phenol formation and its reduction in

the interface and the bulk liquid.

Our explanation of the present results is that we have inside cavitation decomposition of

CDPE as a monomolecular reaction, while the reactions occurring in the surrounding shell and

bulk liquid are bimolecular. This means that inside cavitation CDPE suffers pyrolysis while

outside cavitation in the interface and in the bulk liquid oxidation takes place, by HO radicals

that are copiously generated from the water vapor during the collapse, as well as hydrogena-

tion with the hydrogen atoms generated by the catalyst.

REACTION MECHANISMS

The first reaction that occurs, regardless the reaction site, inside or outside cavitation, is

dechlonnation of CDPE. The reaction pathway is however different inside and outside the bub-

ble.

Inside cavitation:

There are two processes that occur inside the cavitation bubbles during their collapse: water

decomposition leading to HO radicals and hydrogen atoms, and pyrolysis of the chlorinated

compound.

The reaction inside the bubble is a monomolecular one, namely the pyrolysis of CDPE, lead-

ing to C - Cl bond cleavage:

〈ヨ-0-くラーCl }))) 〈ヨ-0-局 - Cl-

〈ヨ-0-〈∋ ・ 細■Fl 〈ヨ-0-0
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The diphenylether radical extracts hydrogen or reacts with the hydrogen generated by water

decomposition inside cavitation, leading to diphenylether as the main reaction product. The chlo-

rine atom is trapped by the NaOH solution. The inside cavitation reaction is t-here fore respon-

sible mainly for diphenylether production.

The second major reaction product is phenol (sodium phenolate due to the alkalinity of the

medium) and it could be obtained by further splitting of diphenylether radical. Phenol cannot

suffer further decomposition because the high pH of the bulk solution forbids its entering the

cavitation.

The largest amount of phenol is formed in the 200, 35 kHz as well as in the silent expen-

merits. These results suggest the possible formation of phenol by CDPE hydrogenolysis outside

cavitation.

Outside cavitation :

As was mentioned before, outside cavitation a bimolecular process occurs, namely the reac-

tion of CDPE with the hydrogen generated by the Raney Ni catalytic system.

〈ヨ一〇◎-ci一世- 〈ヨ-0-局 + HCI
This reaction produces diphenylether and by further hydrogenation of this one, phenol as well

as cyclohexanol. The silent reaction proves this by its products mentioned above.

In our experimental system the CDPE decomposition is a consequence of both processes: sono-

chemical and silent one. In the sonochemical process there is a monomolecular reaction msidet

he cavitation bubbles and a bimolecular one outside the cavitation bubbles. The latter oper-

ates for the silent reaction too.

CONCLUSIONS

The results of the work presented in this paper could be summarized in the following conclu-

sions

- Decomposition of a dioxin-like compound is possible using a combination of ultrasonic ener-

gy and a catalyst (Raney Ni).

- By choosing the right ultrasonic frequency, temperature as well as initial concentration of

the chlorinated compound, a high conversion could be achieved: 20 kHz, 60 ℃ gives 96.5%

conversion of CDPE. The power of ultrasound to promote decontamination is clearly shown

by the 60 ℃ experiments.

- This research work demonstrates that it is possible to use the ultrasonic technique in con-

nection with a catalytic system to attack the dioxin decontamination problem.
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