1	Indication Criteria of Hysteroscopic Surgery for Secondary Infertility Due to
2	Symptomatic Cesarean Scar Defect Based on Clinical Outcomes: A Retrospective
3	Cohort Study
4	
5	Shunichiro Tsuji, MD, PhD; ¹ Yuri Nobuta, MD; Yutaka Yoneoka, MD, PhD; ¹ Akiko
6	Nakamura, MD; ¹ Tsukuru Amano, MD, PhD; ¹ Akie Takebayashi, MD, PhD; ¹ Tetsuro
7	Hanada, MD, PhD; ¹ Takashi Murakami, MD, PhD ¹
8	
9	¹ Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta
10	Tsukinowa-cho, Otsu, City, Shiga 520-2192, Japan
11	
12	Author e-mail addresses:
13	Shunichiro Tsuji; tsuji002@belle.shiga-med.ac.jp
14	Yuri Nobuta; <u>uri@belle.shiga-med.ac.jp</u>
15	Yutaka Yoneoka; <u>vone1228@belle.shiga-med.ac.jp</u>
16	Akiko Nakamura; akikon@belle.shiga-med.ac.jp
17	Tsukuru Amano; <u>tsukuru@belle.shiga-med.ac.jp</u>
18	Akie Takebayashi; akiie21@belle.shiga-med.ac.jp

19	Testsuro Hanada; <u>thanada@belle.shiga-med.ac.jp</u>				
20	Takashi Murakami; tm@belle.shiga-med.ac.jp				
21					
22	Declarations of interest: The authors declare no conflict of interest in this study.				
23					
24	Previous publication/presentation statement: This manuscript has not been				
25	published or presented elsewhere in part or in entirety and is not under consideration by				
26	another journal.				
27					
28	Source of funding: Grants in Aid for Scientific Research (KAKENHI; 20K09668)				
28 29	Source of funding: Grants in Aid for Scientific Research (KAKENHI; 20K09668) supported this study and the preparation of this manuscript, including English language				
29	supported this study and the preparation of this manuscript, including English language				
29 30	supported this study and the preparation of this manuscript, including English language				
29 30 31	supported this study and the preparation of this manuscript, including English language editing services.				
29 30 31 32	supported this study and the preparation of this manuscript, including English language editing services. * Corresponding author: Shunichiro Tsuji, M.D., Ph.D.				
29 30 31 32 33	supported this study and the preparation of this manuscript, including English language editing services. * Corresponding author: Shunichiro Tsuji, M.D., Ph.D. Department of Obstetrics and Gynecology, Shiga University of Medical Science				

- 37 E-mail: tsuji002@belle.shiga-med.ac.jp
- 39 Data and number of IRB: Approval number R2022-097 (September 28, 2022)
- **Data availability statement:** Additional data from this study are available from the
- 42 corresponding author upon reasonable request.
- **Word count:** 3037 words

- **Precis:** Hysteroscopic surgery is indicated for patients with infertility due to symptomatic
- 46 cesarean scar defects and residual myometrial thickness of \geq 2.2 mm, particularly for
- 47 patients aged <38 years.

50 Abstract

- 51 **Study objective**: Hysteroscopic surgery criteria for patients with cesarean scar defect
- 52 (CSD) are unclear. Therefore, this study aimed to explore the indication of hysteroscopic
- 53 surgery for secondary infertility due to CSD.
- 54 **Design**: Retrospective cohort study
- 55 **Setting**: Single university hospital

56 **Patients:** Seventy patients with secondary infertility due to symptomatic CSD who 57 underwent hysteroscopic surgery under laparoscopy between July 2014 and February

58 **2022 were included**.

Interventions: Clinical data, including basic patient information, preoperative residual myometrial thickness (RMT), and postoperative pregnancy status, were collected from medical records. Patients were divided into postoperative pregnancy and non-pregnancy groups. A receiver operating characteristic (ROC) curve was drawn, and the optimal cutoff value was calculated based on the area under the curve (AUC) to predict pregnancy after hysteroscopic surgery.

Measurements and main results: No complications were observed in any cases.
 Among the 70 patients, 49 (70%) patients became pregnant after hysteroscopic surgery.
 There was no significant difference in patient characteristics between the pregnancy and

68	non-pregnancy groups. In the ROC curve analysis for patients aged <38 years, the value
69	of AUC was 0.77 (sensitivity: 0.83 and specificity: 0.78) when optimal cutoff of RMT was
70	2.2 mm. There was a significant difference in preoperative RMT between the pregnancy
71	and non-pregnancy groups (3.3 mm and 1.7 mm, respectively) in patients aged <38
72	years.
73	Conclusion: For RMT \geq 2.2 mm, hysteroscopic surgery was reasonable for secondary
74	infertility due to symptomatic CSD, particularly in patients aged <38 years.
75	

76 **Keywords:** cesarean scar syndrome; cesarean section; hysteroscopic surgery

77 Introduction

78 The cesarean section procedure can cause cesarean scar defects (CSD), which 79 can result in several symptoms including abnormal uterine bleeding (AUB), 80 dysmenorrhea, chronic pelvic pain, and secondary infertility [1-3]. The presence of these 81 symptoms is known as cesarean scar syndrome (CSS) [4]. There is increasing evidence 82 of the safety and effectiveness of hysteroscopic surgery for secondary infertility in women 83 with CSS [2, 5]. However, the hysteroscopic surgery criteria in these patients are unclear. 84 The indication for hysteroscopic surgery is residual myometrial thickness (RMT) 85 of \geq 3 or \geq 2.5 mm according to Donnez [2] or Tanimura et al. [6], respectively. However, 86 both criteria seem to rely on the concept of uterine perforation prevention due to thinned 87 myometrium rather than clinical data. Therefore, establishing clinical outcome-based 88 indications for hysteroscopic surgery is necessary. For patients who desire pregnancy, 89 the clinical outcome of interest is successful conception. There is a strong association 90 between aging and fertility as aging reduces ovarian reserve and fertility declines with 91 age, particularly in women aged >35 years [7]. Therefore, the factor of age should be 92 considered for pregnancy prognosis prediction.

93

100	Materials and Methods
99	
98	based on AUC values.
97	based hysteroscopic surgery criteria for secondary infertility due to symptomatic CSD
96	is useful for interpretation of prognosis [8, 9]. Therefore, we explored clinical outcome-
95	efficacy of clinical diagnosis and prognosis, and the area under the ROC curve (AUC)
94	The receiver operating characteristic (ROC) curve is widely used to determine the

. . ..

101 Patients

~ 4

102 This retrospective study was approved by the Ethics Committee of Shiga University of Medical Science (approved number R2022-097) and performed at Shiga 103 104 University of Medical Science. Although written informed consent was obtained from all 105 patients prior to surgery, it was waived for this study due to its retrospective nature. 106 Alternatively, an opt-out methodology was used. This method provided patients the 107 opportunity to decline participation in this study. All data were fully anonymized after 108 collection. We enrolled patients with secondary infertility due to symptomatic CSD 109 between July 2014 and February 2022. The inclusion criteria were the presence of both CSD and AUB or liquid pooling in CSD detected by transvaginal ultrasonography. 110 Inspection for AUB was performed in accordance with the FIGO classification system 111

(PALM-COEIN) [10]. Patients with endometrial polyps, cervical polyps, abnormal cervical
cytology, endometrial hyperplasia, uterine fibroids, adenomyosis, and coagulopathy
were excluded. Furthermore, the enrolled participants had all tried to conceive for at least
12 months after surgery. Patients who no longer desired pregnancy <1 year after surgery
were excluded. All patients were divided into two groups: postoperative pregnancy and
non-pregnancy.

118

119 Surgical procedure

120 The procedure for hysteroscopic surgery has been previously reported [11]. In 121 our hospital, there is no minimum RMT value for performing hysteroscopic surgery. 122 Briefly, all hysteroscopic surgeries were performed using laparoscopy because it was 123 necessary to monitor perforation in CSD and treat endometriosis whenever it was 124 intraoperatively recognized in the pelvis. First, only the inferior edge of the CSD was 125 resected to enable visualization of the diverticulum. Second, the entire isthmus, including 126 CSD, was cauterized using a ball electrode. Patients were then allowed to conceive 2 127 months after surgery. Elective cesarean delivery was recommended for all postoperative 128 deliveries.

129

130 Data collection

131 Information on participants such as age, body mass index (BMI), gravidity, parity, 132 number of cesarean sections, period of infertility, preoperative history of artificial 133 reproductive technology (ART) treatment, and RMT was collected. RMT was measured using magnetic resonance imaging on a 1.5-T instrument (SIGNA HDxt; GE Healthcare 134 135 Waukesha, WI, USA) with an 8-channel phased array coil, which was performed 136 preoperatively. In addition, we collected information regarding perinatal prognosis and 137 how the pregnancy was achieved. For patients who did not continue to visit our hospital, 138 we confirmed their current situation via a medical information provision form provided by 139 their referral hospital or by telephone.

140

141 Statistical analysis

Statistical analyses were performed using GraphPad Prism version 7 (GraphPad Software, Inc., San Diego, CA, USA). The D'Agostino–Pearson test was used for statistical analysis. Normally distributed data are presented as mean ± standard deviation, while non-normally distributed data are presented as median (interquartile range). The postoperative pregnancy and non-pregnancy groups were compared using an unpaired two-tailed t-test or the Mann–Whitney U test for parametric and non-

148	parametric data, respectively. Categorical data were analyzed using Fisher's exact test.
149	Statistical significance was set at p <.05. The ROC curve was graphically displayed with
150	sensitivity estimates plotted against 1 - specificity. AUC was calculated as a prognostic
151	marker. An AUC >0.75 was defined as a good indicator, as previously reported [12-15].
152	Cutoff values were calculated using the Youden index method.
153	
154	Results
155	No patients meeting the inclusion criteria were lost to follow-up. Of the eligible
156	patients, the mean age was 36.2 ± 4.3 years, median BMI was 21 (interquartile range:
157	19–23) kg/m ² , median number of gravidities was 2 (interquartile range: 1–2), median
158	number of cesarean sections was 1 (interquartile range: 1-1), and median period of
159	infertility was 18 months (interquartile range: 8-36 months). Regarding preoperative
160	history of ART treatment, 40 patients (57.1%) underwent ART before surgery. All
161	surgeries were performed without any complications such as uterine perforation. Of the
162	70 patients, 49 (70%) patients became pregnant after surgery. There was no significant
163	difference between the pregnancy and non-pregnancy groups in terms of basic patient
164	characteristics including preoperative and postoperative RMT (Table 1). Postoperatively
165	pregnant and non-pregnant cases were distinguished, and scatterplots related to age

166	and RMT were generated (Figure 1). The ROC curve was drawn for each age group,
167	and the AUC was calculated (Figure 2). In patients aged <36 years, the AUC was 0.95
168	(sensitivity: 0.75 and specificity: 1.00) when the optimal RMT cutoff was 2.3 mm (Figure
169	2A). In patients aged <37 years, the AUC was 0.86 (sensitivity: 0.81 and specificity: 0.88)
170	when the optimal RMT cutoff was 2.2 mm (Figure 2B). In patients aged <38 years, the
171	AUC was 0.77 (sensitivity: 0.83 and specificity: 0.78) when the optimal RMT cutoff was
172	2.2 mm (Figure 2C). In patients aged <39 years, the AUC was 0.71 (sensitivity: 0.83 and
173	specificity: 0.73) when the optimal RMT cutoff was 2.1 mm (Figure 2D). In patients aged
174	<40 years, the AUC was 0.36 (sensitivity: 0.20 and specificity: 0.36) when the optimal
175	RMT cutoff was 2.2 mm (Figure 2E). The AUC was 0.43 in all patients (sensitivity: 0.92
176	and specificity: 0.28) when the optimal RMT cutoff was 5.5 mm (Figure 2F). Although
177	there was no significant difference in preoperative RMT between the pregnancy and non-
178	pregnancy groups in any patients (3.6 \pm 1.5 mm and 3.7 \pm 2.8 mm, respectively) (Figure
179	3A), there was a significant difference in preoperative RMT between the pregnancy and
180	non-pregnancy groups (3.3 [2.3–4.4] mm and 1.7 [0.9–1.9] mm, respectively) in patients
181	aged <38 years (Figure 3B).

Forty-eight patients received ART and 22 received non-ART as postoperative
 treatment (Figure 4). Subsequently, 34 (70.9%) patients became pregnant with ART and

184	15 (68.2%) became pregnant with non-ART. No significant between-group difference
185	was observed. Regarding obstetrical outcomes, 42 patients had live births by elective
186	cesarean section and 7 had spontaneous abortion. The median birth weight among live
187	birth cases was 2,877 g. Of 42 patients, cesarean section scar dehiscence was observed
188	in two cases at the time of elective cesarean section; however, there was no case of
189	uterine rupture and cesarean scar pregnancy.
190	
191	Discussion
192	This study revealed that preoperative RMT correlated with pregnancy after
193	hysteroscopic surgery. However, it was also found that aging affected postoperative
194	pregnancy. Therefore, we were able to show a novel indication that hysteroscopic
195	surgery can be performed if the preoperative RMT is ≥2.2 mm, especially under the
196	condition of aged <38 years. This study is the first report that preoperative RMT is a
197	predictor of pregnancy outcome after hysteroscopic surgery.
198	We previously demonstrated that greater RMT predicted pregnancy prognosis
199	[11]. However, it is difficult to predict whether RMT is greater before surgery. Therefore,
200	in this study, we attempted to determine the indication for hysteroscopic surgery based
201	on preoperative information only. However, pregnancy is associated with various factors

202	such as ovarian reserve. When we first created a scatter plot of age and preoperative
203	RMT (Figure 1), we realized that preoperative RMT could predict pregnancy in young
204	patients. However, it is not clear at what age they should be sorted. Hence, an ROC
205	curve was drawn for each age group. However, it is debatable whether AUC is a good
206	predictor. Fischer et al. [14] and Akobeng [13] described an AUC of 0.7-0.9 as an
207	indicator of moderate accuracy. Considering all aforementioned factors, we concluded
208	that an RMT of 2.2 mm with an AUC of \geq 0.75 and age of <38 years could indicate
209	hysteroscopic surgery. However, the appropriate RMT cutoff value depends on patient
210	age. If an AUC of >0.9 represents a good indicator, this study indicates that hysteroscopic
211	surgery is recommended for patients with an RMT of >2.3 mm, particularly in patients
212	aged <36 years. This phenomenon is considered a limitation of this study because a
213	good indicator cannot be established based on a specific AUC value.

Many studies have demonstrated the effectiveness of hysteroscopic surgery for secondary infertility due to symptomatic CSD [6, 16-20], and the effectiveness of laparoscopic repair for women with CSS [6, 20, 22-27]. Because hysteroscopic surgery is generally less invasive than laparoscopic surgery, hysteroscopic surgery is recommended if the case is operable. Perforation of CSD by hysteroscopic surgery has been reported for a recent case of severe CSD [28], defined as RMT \leq 3.0 mm. Our surgical procedure and this novel indication may be appropriate from a risk managementperspective.

222 A strength of this study is that it is the first report regarding an indication for 223 hysteroscopic surgery using preoperative RMT. In this study, we found that an RMT of <2.2 mm was associated with low pregnancy expectations after hysteroscopic surgery 224 225 in young women. Although age affects the establishment of pregnancy, based on the 226 data of non-elderly patients, 2.2 mm can be considered an indication for hysteroscopic 227 surgery. Regarding the limitations of this study, because CSD alone could not prove the 228 cause of infertility, especially in elderly infertile patients, it was difficult to determine the 229 indication for surgery based on preoperative RMT data alone. Therefore, for elderly 230 infertility cases, it is necessary to consider treatment individually, such as performing 231 ART treatment with hysteroscopic surgery due to decreased ovarian reserve. In other 232 words, preoperative RMT is not a good predictor of pregnancy prognosis after 233 hysteroscopic surgery in elderly patients. Furthermore, we did not exclude hysteroscopic 234 surgery in elderly patients.

Although the mechanism leading to pregnancy by hysteroscopic surgery has not been completely clarified, clinical data indicate the novel indication of hysteroscopic surgery for secondary infertility due to symptomatic CSD. The study results suggest that

- hysteroscopic surgery is reasonable when the RMT is ≥2.2 mm, particularly in patients
- aged <38 years. We believe that this novel indicator will be helpful for surgical procedure
- selection.
- 241

242 Acknowledgment

- 243 We would like to thank Editage (<u>www.editage.com</u>) for English language editing.
- 244

245 **References**

Tsuji S, Murakami T, Kimura F, et al. Management of secondary infertility
 following cesarean section: Report from the Subcommittee of the Reproductive
 Endocrinology Committee of the Japan Society of Obstetrics and Gynecology. *J Obstet Gynaecol Res.* 2015;41:1305-1312.

250 2. Donnez O. Cesarean scar defects: management of an iatrogenic pathology

whose prevalence has dramatically increased. *Fertil Steril*. 2020;113:704-716.

252 3. Murji A, Sanders AP, Monteiro I, et al. Cesarean scar defects and abnormal

uterine bleeding: a systematic review and meta-analysis. *Fertil Steril.* 2022;118:758-766.

4. Morris H. Cesarean scar syndrome. S Afr Med J. 1996;86:1558.

255 5. Vrijdaghs V, Dewilde K, Froyman W, Van den Bosch T. Hysteroscopic

256 management of caesarean scar defects. *J Obstet Gynaecol.* 2022;42:816-822.

257 6. Tanimura S, Funamoto H, Hosono T, et al. New diagnostic criteria and operative

258 strategy for cesarean scar syndrome: Endoscopic repair for secondary infertility caused

by cesarean scar defect. *J Obstet Gynaecol Res.* 2015;41:1363-1369.

260 7. Practice Committee of the American Society for Reproductive Medicine and the

- 261 Practice Committee of the Society for Reproductive Endocrinology and Infertility.
- 262 Electronic address: <u>asrm@asrm.org</u>. Optimizing natural fertility: a committee opinion.

263 *Fertil Steril.* 2022;117:53-63.

264	8.	Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for
265	medical	diagnostic test evaluation. Caspian J Intern Med. 2013;4:627-635.
266	9.	Hanley JA, McNeil BJ. The meaning and use of the area under a receiver
267	operatir	ng characteristic (ROC) curve. <i>Radiology.</i> 1982;143:29-36.
268	10.	Munro MG, Critchley HO, Broder MS, et al. FIGO classification system (PALM-
269	COEIN)	for causes of abnormal uterine bleeding in nongravid women of reproductive
270	age. Int	J Gynaecol Obstet. 2011; 113:3-13.
271	11.	Tsuji S, Takahashi A, Higuchi A, et al. Pregnancy outcomes after hysteroscopic
272	surgery	in women with cesarean scar syndrome. <i>PLoS One</i> . 2020;15:e0243421.
273	12.	Wray NR, Yang J, Goddard ME, Visscher PM. The genetic interpretation of area
274	under th	ne ROC curve in genomic profiling. <i>PLoS Genet.</i> 2010;6:e1000864.
275	13.	Akobeng AK. Understanding diagnostic tests 3: Receiver operating

- characteristic curves. *Acta Paediatr.* 2007;96:644-647.
- 14. Fischer JE, Bachmann LM, Jaeschke R. A readers' guide to the interpretation of
- diagnostic test properties: clinical example of sepsis. Intensive Care Med. 2003;29:1043-
- **1051**.
- 280 15. Swets JA. Measuring the accuracy of diagnostic systems. Science.

1988;240:1285-1293.

16. Fernandez E, Fernandez C, Fabres C, Alam VV. Hysteroscopic correction of
cesarean section scars in women with abnormal uterine bleeding. *J Am Assoc Gynecol Laparosc.* 1996;3:S13.

17. Fabres C, Arriagada P, Fernandez C, Mackenna A, Zegers F, Fernandez E.
Surgical treatment and follow-up of women with intermenstrual bleeding due to cesarean
section scar defect. *J Minim Invasive Gynecol.* 2005;12:25-28.

18. Gubbini G, Casadio P, Marra E. Resectoscopic correction of the "isthmocele" in

women with postmenstrual abnormal uterine bleeding and secondary infertility. *J Minim*

290 *Invasive Gynecol.* 2008;15:172-175.

19. Gubbini G, Centini G, Nascetti D, et al. Surgical hysteroscopic treatment of

292 cesarean-induced isthmocele in restoring fertility: prospective study. J Minim Invasive

293 *Gynecol.* 2011;18:234-237.

294 20. Lv B, Xie X, Liu C, Lin Y. Laparoscopic combined with hysteroscopic repair or

- 295 operative hysteroscopy in the treatment of symptomatic cesarean-induced diverticulum.
- 296 *Med Sci (Paris).* 2018;34 Focus issue F1:47-51.
- 297 21. Shapira M, Mashiach R, Meller N, et al. Clinical success rate of extensive
 298 hysteroscopic cesarean scar defect excision and correlation to histologic findings. J

299 *Minim Invasive Gynecol.* 2020;27:129-134.

300 22. Marotta ML, Donnez J, Squifflet J, Jadoul P, Darii N, Donnez O. Laparoscopic

- 301 repair of post-cesarean section uterine scar defects diagnosed in nonpregnant women.
- 302 J Minim Invasive Gynecol. 2013;20:386-391.
- 203 23. Zhang X, Yang M, Wang Q, Chen J, Ding J, Hua K. Prospective evaluation of

304 five methods used to treat cesarean scar defects. *Int J Gynaecol Obstet.* 2016;134:336-

305 **339**.

306 24. Donnez O, Donnez J, Orellana R, Dolmans MM. Gynecological and obstetrical

307 outcomes after laparoscopic repair of a cesarean scar defect in a series of 38 women.

308 *Fertil Steril.* 2017;107:289-296.e2.

25. Zhang Y, Jia Y, Wang X, Sun Q. Feasibility analysis of different surgical methods

310 for uterine cesarean section scar diverticulum. J Obstet Gynaecol Res. 2020;46:1758-

1765.

312 26. Kasapoglu DZ, Tang LYO, Kadir RA, Shakir F. Laparoscopic management of a
313 full-thickness uterine niche with subsequent pregnancy outcome. *Facts Views Vis Obgyn.*314 2021;13:411-414.

315 27. Goldenberg M, Timor I, Mashiach R, Cohen S, Sasson AM. Pregnancy following
 316 cesarean scar defect (niche) repair: a cohort study. *Arch Gynecol Obstet.*

- 317 **2022;306:1581-1586**.
- 318 28. Zeller A, Villette C, Fernandez H, Capmas P. Is hysteroscopy a good option to
- 319 manage severe cesarean scar defect? *J Minim Invasive Gynecol.* 2021;28:1397-1402.

321 Figure Legends

322 **Figure 1.**

- 323 A scatter diagram with pregnancy as \circ , non-pregnancy as \bullet , age on the horizontal axis,
- 324 and residual myometrial thickness on the vertical axis.

325

- 326 **Figure 2.** A receiver operating characteristic (ROC) curve of the pregnancy rate after
- 327 hysteroscopic surgery in women with cesarean scar syndrome in each age group.
- 328 **A.** The area under the ROC curve (AUC) was 0.95 in patients aged <36 years (sensitivity:
- 329 0.75, specificity: 1.00, optimal RMT cutoff: 2.3 mm). **B**. The AUC was 0.86 in patients
- aged <37 years (sensitivity: 0.81, specificity: 0.88, optimal RMT cutoff: 2.2 mm). **C**. The
- AUC was 0.77 in patients aged <38 years (sensitivity: 0.83, specificity: 0.78, optimal RMT
- 332 cutoff: 2.2 mm). D. The AUC was 0.71 in patients aged <39 years (sensitivity: 0.83,
- 333 specificity: 0.73, optimal RMT cutoff: 2.1 mm) **E.** The AUC was 0.36 in patients aged <40
- 334 years (sensitivity: 0.20, specificity: 0.36, optimal RMT cutoff: 2.2 mm). **F.** The AUC was
- 0.43 in all patients (sensitivity: 0.92, specificity: 0.28, optimal RMT cutoff: 5.5 mm).

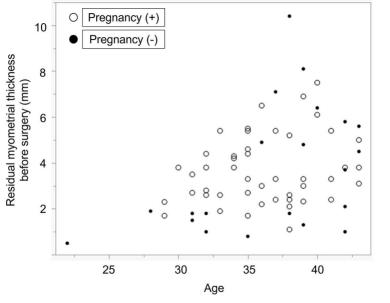
336

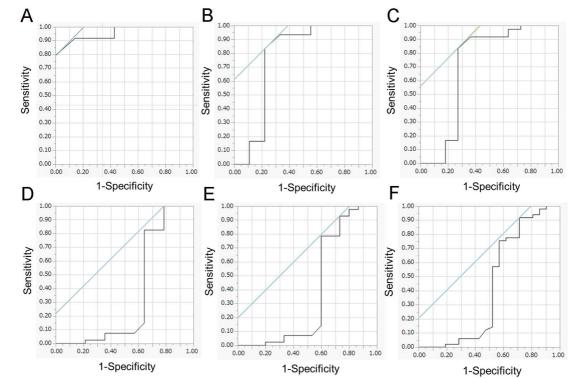
Figure 3.

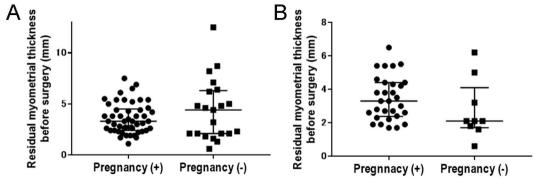
338 Residual myometrial thickness (RMT) before surgery in the postoperatively pregnant and

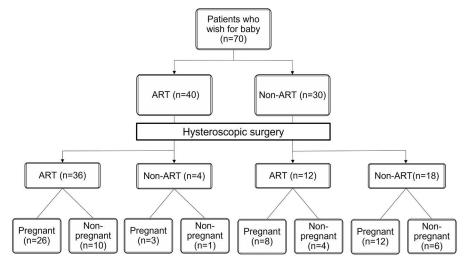
339	non-pregnant patients. A. There was no significant difference in RMT between the
340	pregnancy and non-pregnancy groups of all ages (n=70). An unpaired two-tailed t-test
341	was used for analysis. The bar represents mean and standard deviation. B. There was
342	a significant difference between postoperatively pregnant and non-pregnant patients in
343	the group aged <38 years (n=39, p < 0.0001). The Mann–Whitney test was used for
344	analysis. Bar represents median and interquartile range.
345	

Figure 4.


347 The association of pre- and postoperative ART and postoperative pregnancy.


Characteristics	Pregnancy	Non-pregnancy	p-value
Number	49	21	
Age, years	36.1 ± 3.7	36.7 ± 5.6	n.s.
BMI, kg/m²	21 (20–25)	20 (19–22)	n.s.
Gravidity	2 (1–2)	2 (1–2)	n.s.
Parity	2 (1–2)	2 (1–2)	n.s.
C/S number	1 (1–1)	1 (1–2)	n.s.
Period of infertility, months	18 (7–36)	20 (8–37)	n.s.
Endometriosis (%)	33 (67%)	16 (76%)	
r-ASRM classification 1–2	29	13	n.s.
3–4	4	3	
Preoperative history of ART	20 (50 20/)	11 (50 40/)	
Treatment	29 (59.2%)	11 (52.4%)	n.s.
Preoperative RMT, mm	3.6 ± 1.5	3.7 ± 2.8	n.s.
Postoperative RMT, mm	5.3 ± 1.8	4.3 ± 3.0	n.s.


Table 1 Background details of the participants


ART, assisted reproductive technology; BMI, body mass index; C/S, cesarean section; n.s., not significant; r-ASRM, revised American Society for Reproductive Medicine; RMT, residual myometrial thickness.

Normally distributed data are presented as mean ± standard deviation, while nonnormally distributed data are presented as median (interquartile range).

