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Abstract
Background: Intestinal fibrosis in Crohn’s disease (CD) is 
considered to be irreversible and induces persistent luminal 
narrowing and strictures. In the past decades, substantial ad-
vances have been made in the understanding of the cellular 
and molecular mechanisms underlying intestinal fibrosis in 
inflammatory bowel disease (IBD). Summary: Intestinal fi-
brosis is typically associated with mesenchymal cell hyper-
plasia, tissue disorganization, and deposition of extracellular 
matrix (ECM). The transient appearance of mesenchymal 
cells is a feature of normal wound healing, but the persis-
tence of these cells is associated with ECM deposition and 
fibrosis, leading to loss of normal architecture and function. 
When homeostatic control of the repair process becomes 
dysregulated, perpetual activation of profibrotic responses 
and sustained accumulation of ECM are induced. In the pro-
cess of intestinal fibrosis, myofibroblasts are considered to 
be the key effector cells, being responsible for the synthesis 
of ECM proteins. Activation and accumulation of myofibro-
blasts in the stricturing lesions of CD patients are mediated 
by various factors such as growth factors, cytokines, epithe-
lial-to-mesenchymal or endothelial-to-mesenchymal transi-
tions. Despite the identification of many putative targets 

and target pathways applicable to antifibrotic therapies, no 
such treatment has yet been successful. Predictive biomark-
ers and non-invasive diagnostic tools for intestinal fibrosis 
are still insufficient in IBD. Key Message: We summarize re-
cent advances in the understanding of the cellular and mo-
lecular mechanisms underlying intestinal fibrosis in IBD.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

Inflammatory bowel diseases (IBD), which include 
Crohn’s disease (CD) and ulcerative colitis (UC), are 
characterized by chronic intestinal inflammation medi-
ated by dysregulated innate and adaptive immune re-
sponses to luminal antigens such as dietary factors and 
microbiota [1–3]. The chronic inflammatory process 
leads to disruption of the epithelial barrier and tissue de-
struction. Resolution of inflammatory activity is associ-
ated with a repair process that facilitates tissue remodel-
ling, which restores normal intestinal architecture. Repair 
processes in UC patients are often effective in restoring a 
normal mucosal architecture, but stricture formation as-
sociated with excess fibrosis frequently occurs in CD pa-
tients [4, 5]. Intestinal fibrosis in CD patients is consid-
ered to be irreversible and induces persistent luminal nar-
rowing and strictures [6]. A recent prospective study in 
Japan reported that approximately 35% of CD patients 
were classified as stricturing or penetrating phenotype at 
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diagnosis [7, 8]. Cosnes et al. [5] reported that more than 
50% of CD patients develop a penetrating or stricturing 
course of the disease.

Intestinal fibrosis is typically associated with mesen-
chymal cell hyperplasia, tissue disorganization, and de-
position of extracellular matrix (ECM) [9]. The transient 
appearance of mesenchymal cells is a feature of normal 
wound healing, but the persistence of these cells is associ-
ated with excessive ECM deposition and fibrosis, leading 
to loss of normal architecture and function. When ho-
meostatic control of the repair process becomes dysregu-
lated, perpetual activation of profibrotic responses and 
sustained accumulation of ECM are induced. In this re-
view, we focus on recent advances in the understanding 
of the cellular and molecular mechanisms underlying in-
testinal fibrosis in IBD.

Myofibroblasts: Key Players in Intestinal Fibrosis

Mesenchymal cells, which play a major role in intestinal 
fibrosis, include fibroblasts, myofibroblasts, and smooth 
muscle cells. Proliferation and activation of these cells are 
induced in response to various bioactive factors such as cy-
tokines and growth factors. These cell types have been clas-
sified according to the expression pattern of three immuno-
histochemical markers: vimentin, α-smooth muscle actin 
(α-SMA), and desmin [10]. Fibroblasts are positive for vi-
mentin but negative for α-SMA and desmin. In contrast, 
myofibroblasts are positive for vimentin and α-SMA but 
negative for desmin. Smooth muscle cells are negative for 
vimentin but positive for α-SMA and desmin.

In normal intestinal mucosa, myofibroblasts can be 
detected immediately subjacent to the basement mem-
brane, juxtaposed to the base of the epithelial cells [10]. 
The location of myofibroblasts below the basement mem-
brane suggests that these cells may play a role in the regu-
lation of a number of epithelial cell functions, such as pro-
liferation and differentiation, and ECM metabolism for 
maintaining a fresh basement membrane. Previous litera-
ture has described the existence of myofibroblasts as a 
syncytium that extends throughout the lamina propria, 
merging with the pericytes surrounding the blood vessels 
[10–12]. In the region of the crypts, myofibroblasts and 
muscularis mucosa cells work with epithelial cells to con-
struct the stem cell niche [10].

In the process of intestinal fibrosis, myofibroblasts are 
considered to be the key effector cells as they are respon-
sible for the synthesis of ECM proteins. Accumulation of 
myofibroblasts is mainly mediated by the following four 

mechanisms: proliferation and activation of local fibro-
blasts or myofibroblasts; induction of epithelial-to-mes-
enchymal transition (EMT); recruitment and differentia-
tion of bone marrow-derived mesenchymal stem cells; 
and endothelial-to-mesenchymal transition (Endo-MT) 
[13]. Alfredsson et al. [14] demonstrated that myofibro-
blasts accumulate in layers most affected by fibrosis such 
as the submucosa, subserosa, and peri-cryptal region in 
the stricturing lesions of CD patients. Zidar et al. [15] 
have recently reported the major changes in mesenchy-
mal subpopulations in the stricturing lesions of CD pa-
tients. In normal gut, CD34-positive fibroblasts/pericytes 
have been detected in the submucosa and subserosa, par-
ticularly around blood vessels [15]. In CD patients how-
ever, fibrosis prevailed in the submucosa and subserosa 
together with proliferation of myofibroblasts and disap-
pearance of CD34-positive fibroblasts/pericytes, suggest-
ing that fibroblasts/pericytes are the most likely source of 
myofibroblasts in CD [15].

Factors mediating proliferation of myofibroblasts 
have been identified. Resident myofibroblasts are activat-
ed by gradients of autocrine and paracrine growth factors, 
such as platelet-derived growth factor (PDGF), fibroblast 
growth factor 2, transforming growth factor (TGF)-β1, 
insulin-like growth factor-1, and epidermal growth factor 
[13, 16] (Fig. 1). The most potent mitogen for activated 
myofibroblasts is PDGF released by macrophages, mes-
enchymal cells, and endothelial cells. PDGF exerts its ac-
tion via overexpressed α- and β-receptor subunits (i.e., 
PDGF-Rα and PDGF-Rβ) of myofibroblasts, and auto-
crine/paracrine expression of PDGF and upregulation of 
related receptors sustained by TGF-β1. Migration of acti-
vated myofibroblasts to inflammatory sites involves ECM 
components or adhesion molecules such as fibronectin 
[17] and N-cadherin [18]. Thus, accumulation of myofi-
broblasts in the stricturing lesions of CD patients might 
be mediated by various factors such as growth factor 
stimuli.

Kinchen et al. [19] have made a very important report 
about heterogeneity of colonic mesenchymal cells under 
inflammation using single-cell RNA sequencing analysis 
(scRNA-Seq). They identified four new populations of 
mesenchymal cells in addition to classical cell popula-
tions, such as myofibroblasts and pericytes, according to 
gene expression patterns. In UC mucosa, cell population 
involved in maintenance of stem cell niche was decreased, 
and inflammatory mesenchymal population character-
ized by the expression of TNF superfamily member 14, 
fibroblastic reticular cell-associated genes, IL-33, and 
Lysyl oxidases was markedly increased [19]. They sug-
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gested that changes in mesenchymal cell populations may 
lead to epithelial barrier dysfunction and contribute to 
mucosal inflammation in IBD.

Epithelial-to-Mesenchymal Transition and 
Endothelial-to-Mesenchymal Transition

EMT is a key contributor to the pool of activated 
myofibroblasts in multiple organ systems [20, 21]. The 
EMT process is critical for cellular conversion from ep-
ithelial cells to mesenchymal phenotypes. Epithelial 
cells gradually lose their epithelial markers, such as E-
cadherin and cytokeratin, translocate β-catenin signals 
into nuclei, and de novo express some mesenchymal 
markers, typically α-SMA, vimentin, and fibroblast-spe-
cific protein 1 in mesenchymal myofibroblasts [22]. 
During tissue remodelling or fibrosis, myofibroblasts 
arise from epithelial lineage cells that have undergone 

the EMT process [23]. Among the pathways known to 
induce EMT, TGF-β has been shown to be one of the 
most common and essential pathways [24]. After being 
activated by TGF-β, TGF receptor type 1 (TGF-βR1) can 
act through the canonical Smad-dependent pathway or 
Smad-independent pathways (e.g., through the PI3K-
Akt pathway or the mitogen-activated protein kinase 
[MAPK] pathway) to induce EMT [24, 25]. Moreover, 
EMT of polarized epithelial cells into mesenchymal 
myofibroblast cells is mediated by upregulated MMP-9 
induced by TGF-β signalling [22].

A molecular response similar to EMT has been shown 
to occur in endothelial cells [26]. Endo-MT is a dynamic 
process in which endothelial cells undergo complex mo-
lecular changes through which they lose their endothelial 
attributes and acquire a mesenchymal cell-like phenotype 
[26]. This allows the well-ordered endothelial cells to dif-
ferentiate into spindle-shaped mesenchymal-like cells. 
Morphological alterations are accompanied by changes 
in protein expression. In general, loss of endothelial 
markers (e.g., platelet endothelial cell adhesion mole-
cule-1 [PECAM-1] or cluster of differentiation 31 [CD31]) 
and simultaneous acquisition of mesenchymal attributes 
(e.g., vimentin) are observed. TGF-β1 induces endothe-
lial cells to undergo Endo-MT [26], whereas bone mor-
phogenic protein 7 (BMP-7) preserves the endothelial 
phenotype [27].

The Pathological Background of Strictures of CD

Proliferation of mesenchymal cells induces thicken-
ing of the muscularis mucosae and muscularis propria, 
which are reported to be typical findings of CD stric-
tures [6]. Progressed fibrostenosis results in stiffness 
and contraction of the entire submucosal layer. This 
process is mediated not only by excessive submucosal 
fibrosis but also by hyperplasia of the muscularis muco-
sae and muscularis propria. Chen et al. [28] reported 
that the most significant features of stenosis were smooth 
muscle hyperplasia of submucosa, and hypertrophy of 
muscularis propria. They also found a high deposition 
of collagen subtypes I, III, and V around activated mes-
enchymal cells at the margin of the muscularis mucosae. 
They concluded that the inflammation-smooth muscle 
hyperplasia axis may be the most important in the 
pathogenesis of CD-related strictures [28]. In this con-
text, smooth muscle hyperplasia or hypertrophy, as well 
as fibrosis, may be the major contributors to increased 
bowel wall thickness in CD patients.

Fig. 1. Proliferation of intestinal myofibroblasts. Intestinal myofi-
broblasts were stimulated by various growth factors (100 ng/mL) 
for 24 h, and the [3H] thymidine incorporation was then deter-
mined. Each factor was used at 50 ng/mL. **p < 0.01 and *p < 0.05. 
IL, interleukin; TNF, tumour necrosis factor; TGF, transforming 
growth factor; PDGF, platelet-derived growth factor; FGF, fibro-
blast growth factor; IGF, insulin-like growth factor; KGF, kerati-
nocyte growth factor; EGF, epidermal growth factor. This figure 
has been reused from Ref. 60 with permission from Springer Na-
ture Group (License Number 5373230819486).
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Extracellular Matrix Metabolism

Replacement of damaged space by ECM accumulation 
is the final step in restoring continuity of a damaged or-
gan. Activated myofibroblasts become able to increase 
the synthesis of ECM components, in particular, fibrillar 
collagen (mainly collagen type I and III), as well as lam-
inin, fibronectin, and α-SMA. The synthesis of these ECM 
components is stimulated by several profibrogenic growth 
factors and mediators, in particular, TGF-β1 (mainly re-
leased by activated macrophages and myofibroblasts) 
[29–32] and oxidative stress-related mediators. ECM has 
been recognized to be not only a static scaffold holding 
cells in place and maintaining tissue architecture, but a 
dynamic and active participant in maintaining gut ho-
meostasis [33]. Furthermore, ECM is considered to act as 
a reservoir for signalling molecules to surrounding cells 
of either a homeostatic or a fibrotic response to tissue in-
jury [34]. These signalling molecules include macromol-
ecules (i.e., collagens, fibronectin, laminin, heparan sul-
phate proteoglycans), proteases and their inhibitors, and 
growth factors and cytokines. The increased stiffness of 
the tissue is considered to stimulate the activated cells to 
deposit additional ECM in fibrotic lesion [35]. Burke et 
al. [36] have previously demonstrated that in normal in-
testine, the major collagen subtypes are types I and III and 
that strictured intestine is characterized by an increase in 
total collagen and in the relative amount of types III and 
V collagens. These indicate that certain subtypes of col-
lagen (types I and III) may be associated with the normal 
repair process, whereas others (type V) may signify a 
pathological condition, leading to overt fibrosis. ECM 
regulates the inflammatory response and the tissue repair 
and fibrosis by promoting adhesion of immune and non-
immune cells, such as myofibroblasts [37].

Matrix Metalloproteinases and Tissue Inhibitors of 
Metalloproteinases

Histological findings from the inflamed mucosa of 
IBD patients are characterized by chronic inflammation 
and aberrant tissue remodelling with excessive accumula-
tion or degradation of ECM (Fig. 2). Matrix metallopro-
teinases (MMPs) are able to cleave ECM components and 
are predominant proteases involved in the pathogenesis 
of IBD. The balanced turnover of ECM is regulated by the 
opposing functions of MMPs that constantly degrade 
ECMs and their inhibitors, tissue inhibitors of metallo-
proteinases (TIMPs) [38, 39] (Fig. 3). Disruption of the 

MMP-TIMP balance results in a number of pathogenic 
processes including tumour invasion, angiogenesis, and 
tissue fibrosis. MMPs are divided into several groups 
based on their domain structure and substrate specificity: 
collagenases (MMP-1, -8, and -13), gelatinases (MMP-2 
and -9), stromelysins (MMP-3, -10, and -11), matrilysins 
(MMP-7 and -26), membrane-type MMPs (MT-MMP-1 
to -6), and others [40]. Most MMPs are upregulated in 
response to proinflammatory cytokines, cell-cell, or cell-
ECM interactions [41]. MMPs were initially investigated 
for their capacity to degrade the ECM and basement 
membrane to induce cell migration, infiltration, and tis-
sue remodelling [42]. They are currently recognized as 
key regulators of cell function through their ability to 
cleave many kinds of cytokines, chemokines, receptors, 
proteases, and adhesion molecules to alter their function 
[43]. For example, MMP-9 cleaves various substrates in-
volved in the intestinal barrier, such as tight junction 
components (claudins and occludins), precursor of de-
fensins, actins, cadherins, cytokines (TNF and IL-8), and 
growth factor VEGF [44]. Based on this, blocking of 
MMP-9 is considered to be one of the therapeutic targets of 
IBD [44]. MMPs are regulated at several levels from tran-
scription, translation, secretion, and activation [30, 39]. 

Fig. 2. Schematic representation of tissue destruction and repair. 
In the normal repair process, deposition of ECM and activity of 
MMPs are balanced (upper panel). MMP activity is also deter-
mined by the opposing functions of MMPs and their inhibitors, 
TIMPs. If MMP activity dominates over ECM deposition, tissue 
damage, such as ulcer and fistula formation, is induced (middle 
panel). The balance tilted towards ECM accumulation against 
MMP activity leads to tissue fibrosis (lower panel). B2 and B3 in-
dicate the disease phenotypes of Crohn’s disease according to the 
Montreal classification [7].
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There are a large number of physiological inhibitors of 
MMPs, which regulate MMP activity and proteolytic ac-
tivity [45]. The four TIMPs are specific inhibitors of 
MMPs that reversibly inhibit the MMPs in a 1:1 stoichio-
metric fashion [45]. Recent studies suggest that post-
translational modification of MMPs, such as trimeriza-
tion, glycosylation, and citrullination, influences the af-
finity of TIMPs to MMPs [46, 47].

There are many previous reports that describe a role of 
MMPs and TIMPs in the pathophysiology of IBD [38, 
43]. Intestinal myofibroblasts have been shown to secrete 
MMP-2 and, under inflammatory stimuli, MMP-1, -3, 
and -9 [29, 48–50]. Pedersen et al. [51] demonstrated an 
increased expression of MMP-1, -3, -7, -9, and -10 in co-
lonic epithelial cells of IBD patients. Rath et al. [52] re-
ported that expression of MMP-7 and MMP-13 genes was 
significantly increased in the inflamed mucosa of UC pa-
tients, whereas MMP-28 showed a decreased expression. 
They identified that endothelial cells and infiltrating leu-
kocytes were the major cellular sources of MMP-7 and 
MMP-13 [52]. Another study by Koelink et al. [53] has 
shown that infiltrating neutrophils are the main produc-
ing cells of MMP-8, -9, and -10 in the inflamed mucosa 

of IBD patients. Plasma cells from IBD patients were 
shown to produce high and sustained amounts of MMP-
3 [54]. Thus, a wide range of cell types have been shown 
to express MMPs in the inflamed mucosa of IBD patients. 
The accumulated findings have been summarized in a re-
view article by de Bruyn et al. [38]. Biancheri et al. [55] 
have previously demonstrated that MMP-3 and MMP-12 
cleave anti-TNF-α antibodies (infliximab and adalimu-
mab) and that MMP cleavage leads to non-responsive-
ness of IBD patients to anti-TNF-α antibodies. This sug-
gests that the evaluation of mucosal proteolytic potential 
through the quantification of serum or mucosal MMP 
levels may have a potential as a biomarker of non-respon-
siveness to biologic therapy in IBD.

The mRNA and protein expression of TIMPs have 
been investigated and reported in many studies. TIMP-1 
mRNA was found to be strongly expressed in the granula-
tion tissue of the ulcer in ileal and colonic samples from 
IBD patients [56]. Serum TIMP-1 levels were significant-
ly elevated in active IBD patients when compared to inac-
tive patients or healthy controls [57], but serum TIMP-4 
levels were significantly lower in IBD patients. Moreover, 
Soomro et al. [58] demonstrated that stool levels of MMP-
9, MMP-12, and TIMP-1 were significantly higher in IBD 
patients than in healthy controls. An mRNA expression 
study by von Lampe et al. [59] showed a significant in-
crease of MMP-1 and -3 transcripts in the inflamed mu-
cosa of IBD patients, but TIMP-2 mRNA expression was 
not changed. de Bruyn et al. [38] concluded that although 
clinical evidence remains scant, TIMP-3 may be protec-
tive, whereas TIMP-1 may be disease promoting.

Cytokines and Growth Factors That Contribute to 
Intestinal Fibrosis

Transforming Growth Factor-β1
The pleomorphic cytokine, TGF-β, especially its 

TGF-β1 isoform, is the master regulator of fibrosis in 
both intestine and other organs [60]. TGF-β family sig-
nalling is mediated by Smad (canonical) or non-Smad 
(non-canonical) pathways. Through the binding to TGF-
βR1 and 2, TGF-β initiates specific intracellular signalling 
that is expanded by phosphorylation of Smad 2, 3, and 4 
and negatively regulated by Smad 7 [60]. Canonical 
TGF-β signalling via Smads has a central role in the pro-
gression of fibrosis [25]. Di Mola et al. [61] previously 
demonstrated that expression of all isoforms of TGF-β 
and TGF-βRs is increased in lymphocytes, epithelial cells, 
and fibroblasts in the lamina propria of patients with CD. 

Fig. 3. Expression of MMPs and TIMPs mRNAs in intestinal myo-
fibroblasts. The cells were incubated with each factor (100 ng/mL) 
for 12 h. The total RNA was extracted, and Northern blotting was 
performed. IL, interleukin; TNF, tumour necrosis factor; TGF, 
transforming growth factor; PDGF, platelet-derived growth factor; 
FGF, fibroblast growth factor; KGF, keratinocyte growth factor; 
IGF, insulin-like growth factor; EGF, epidermal growth factor. 
This figure has been reused from Ref. 60 with permission from 
Springer Nature Group (License Number 5373230819486).
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Babyatsky et al. showed that TGF-β expression was in-
creased in the inflamed mucosa of IBD patients and that 
TGF-β transcripts were detected mostly in inflammatory 
cells closely located to the luminal surface [62]. Further-
more, di Sabatino et al. [63] reported that myofibroblasts 
isolated from the mucosa of strictured gut showed higher 
TGF-β transcripts, a greater quantity of phosphorylated 
Smad 2 and 3, increased TIMP-1, lower Smad 7, increased 
collagen production, and reduced migration ability com-
pared with myofibroblasts isolated from the mucosa of 
non-structured gut.

TGF-β1 is the most potent inducer of collagen synthe-
sis [25]. It also induces the accumulation of myofibro-
blasts by promoting EMT and Endo-MT through the ca-
nonical Smad-dependent or non-canonical Smad-inde-
pendent pathways and by augmenting the proliferation of 
myofibroblasts and rendering them resistant to apoptosis 
[14, 17, 24, 25]. Smooth muscle cells were transformed to 
myofibroblasts in chronic inflammatory conditions such 
as IBD [64], and these cells actively promote fibrosis by 
inducing collagen synthesis and MMPs under the stimu-
lation of TGF-β. In addition, TGF-β1 affects remodelling 
of the ECM by enhancing tissue expression of TIMP, thus 
reducing the MMP:TIMP ratio, which inhibits local ECM 
degradation and sustains fibrosis [65]. TGF-β augments 
the migration of intestinal myofibroblasts and their col-
lagen-producing capacity [14, 17]. The profibrotic effects 
of TGF-β were also demonstrated in an intestinal organ-
oid fibrosis model, whereby TGF-β upregulated expres-
sion of collagen type I, fibronectin, and α-SMA [32]. In a 

mouse model of chronic colitis, TGF-β1 peptide-based 
vaccine, which suppressed excessive TGF-β bioactivity, 
prevented the development of intestinal fibrosis and as-
sociated complications [66], suggesting a therapeutic ap-
proach to intestinal fibrosis in IBD.

Platelet-Derived Growth Factor
One factor known to influence tissue fibrosis is plate-

let-derived growth factor (PDGF). Two subunits of 
PDGF, PDGF-A and PDGF-B, form either homodimers 
or heterodimers (PDGF-AA, -AB, -BB), and these bind to 
the two structurally related tyrosine kinase receptors de-
fined as PDGFR-α and PDGFR-β. Severi et al. reported 
an increased expression of PDGF in the fibrostenotic le-
sions of CD patients [61]. We have previously demon-
strated that PDGF most strongly stimulated a prolifera-
tion of myofibroblasts isolated from human colon [67], 
although it had a weak effect on collagen synthesis. Previ-
ous studies have reported differing results for collagen 
synthesis. Some reports have shown a dose-dependent 
decrease in the production of type III collagen in fibro-
blasts in the presence of PDGF [68], and others have 
shown an enhanced collagen secretion with PDGF [69]. 
These suggest that PDGF mainly contributes to intestinal 
fibrosis by stimulating myofibroblast proliferation.

Proinflammatory Cytokines: IL-1β, TNF-α, and IL-17
IL-1β, TNF-α, and IL-17 are deeply involved in the 

pathogenesis of IBD and contribute to inflammation and 
fibrosis through myofibroblast activation [70]. These 

Fig. 4. Molecular basis of intestinal fibrosis. 
The molecular milieu that contributes to 
gut fibrosis includes multiple factors whose 
upregulation or downregulation might 
promote excessive deposition of collagens 
and hyperproliferation of activated myofi-
broblasts. IL, interleukin; TNF, tumour ne-
crosis factor; TGF, transforming growth 
factor; PDGF, platelet-derived growth fac-
tor; FGF, fibroblast growth factor; IGF, in-
sulin-like growth factor.
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cytokines induce various inflammatory mediators via ac-
tivation of NF-κB, AP-1, and MAPK signalling pathways 
in human colonic myofibroblasts [29, 71]. In addition, 
these cytokines influence intestinal fibrosis via stimula-
tion of collagen synthesis [29, 72] and induction of MMPs 
and TIMPs [29, 48, 73] (Fig. 3). The potential role of IL-17 
in intestinal fibrosis was investigated by an experiment 
using anti-IL-17 antibody in TNBS colitis [74]. Treat-
ment with anti-IL-17 antibody significantly alleviated in-
testinal fibrosis and reduced both mRNA and protein lev-
els of type III collagen, TNF-α, TIMP-1, and MMP-2. The 
levels of profibrogenic cytokines IL-1β, TGF-β1, and 
TNF-α were also decreased in mice treated with anti-
IL-17 antibody.

IL-33 and IL-36: Newly Identified Fibrogenic 
Cytokines
We have previously reported that expression of IL-33 

and IL-36, members of the IL-1 family, is increased in the 
inflamed mucosa of IBD patients [75, 76]. IL-33 is associ-
ated with Th2 immune responses and exerts profibrotic 
effects [77]. Masterson et al. [78] showed that eosinophils 
are activated by IL-33 and IL-33 primes intestinal fibro-
blasts in the perpetuation of eosinophil recruitment and 
exacerbated fibrosis via IL-13.

IL-36 consists of three subtypes, IL-36α, IL-36β, and 
IL-36γ [79–81], each of which activates NF-κB and MAPK 
pathways [79, 82] via binding to a heterodimeric receptor 
consisting of the IL-36R subunit and the IL-1 receptor ac-
cessory protein (IL-1RAcP) [82, 83]. Scheibe et al. [84] 
demonstrated that IL-36R activation of mouse and hu-
man fibroblasts resulted in expression of genes that regu-
late fibrosis and tissue remodelling, as well as expression 
of collagen type VI. They also showed that injection of 
anti-IL-36R antibody reduced the severity of colitis and 
fibrosis in DSS and TNBS colitis models [84]. Recent 
studies have also implicated IL-36 and IL-36R signalling 
in fibrogenesis in various organs [85].

Conclusion

In this review, we summarized recent findings on the 
molecular basis of intestinal fibrosis in IBD. It is well 
recognized that intestinal myofibroblasts play a crucial 
role in the induction and perpetuation of fibrotic re-
sponse via interaction between profibrogenic mediators 
and pathways (Fig. 4), but recent research using scRNA-
Seq identified new mesenchymal cell populations and 
opened a possibility for further understanding of the 

molecular mechanisms underlying tissue fibrosis in 
IBD. On the other hand, accumulated data from pre-
clinical studies have identified many putative targets 
and target pathways applicable to antifibrotic therapies, 
but no such treatment has yet been successful. Although 
MMP-9 has been shown to be a useful biomarker [44], 
predictive biomarkers and non-invasive diagnostic tools 
are still insufficient in IBD. Taking full advantage of the 
latest technologies such as the scRNA-Seq and multi-omics 
will bring a promising result in the characterization of 
molecular and cellular processes of intestinal fibrosis in 
patients with IBD.
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