Sleep Health: Journal of the National Sleep Foundation Irregular sleep and all-cause mortality: a large prospective cohort study --Manuscript Draft--

Manuscript Number:	SLEEPHEALTH-D-22-00027R2
Article Type:	Original Research Article
Keywords:	sleep regularity; all-cause mortality; sleep duration
Corresponding Author:	Teruhide Koyama Kyoto Prefectural University of Medicine Kyoto, JAPAN
First Author:	Chie Omichi
Order of Authors:	Chie Omichi
	Teruhide Koyama
	Hiroshi Kadotani
	Etsuko Ozaki
	Satomi Tomida
	Tamami Yoshida
	Jun Otonari
	Hiroaki Ikezaki
	Megumi Hara
	Keitaro Tanaka
	Takashi Tamura
	Mako Nagayoshi
	Rieko Okada
	Yoko Kubo
	Isao Oze
	Keitaro Matsuo
	Yohko Nakamura
	Mino Kusakabe
	Rie Ibusuki
	Kenichi Shibuya
	Sadao Suzuki
	Miki Watanabe
	Kiyonori Kuriki
	Naoyuki Takashima
	Aya Kadota
	Sakurako Katsuura-Kamano
	Kokichi Arisawa
	Kenji Takeuchi
	Kenji Wakai
	the J-MICC Study Group

Abstract:	Objectives: Previous studies using objective parameters have shown that irregular sleep is associated with the disease incidence, progression, or mortality. This study aimed to determine the association between subjective sleep duration and sleep regularity, with mortality in a large population. Methods: Participants were from the Japan Multi-Institutional Collaborative Cohort study. We obtained information from each participant on sleep duration, sleep regularity, and demographics and overall lifestyle using self-administered questionnaires. We defined sleep regularity according to participants' subjective assessment of sleep/wake time regularity. Participants ($n=81,382$, mean age : 58.1 ± 9.1 years, males: 44.2%) were classified into six groups according to sleep duration and sleep regularity. Hazard ratios (HR) for time-to-event of death were calculated using the Cox proportional hazards model. Results: The mean follow-up period was 9.1 years and the mean sleep duration was $6.6 \mathrm{~h} /$ day. Irregular sleep significantly increased the risk of all-cause mortality in all models compared with regular sleep (HR 1.30, 95\% confidence interval; CI, 1.18-1.44), regardless of sleep duration. Multivariable analysis of the six groups by sleep pattern (sleep regularity and duration) showed irregular sleep and sleep durations of $<6 \mathrm{~h} /$ day, 6 to $<8 \mathrm{~h} / \mathrm{day}$, or $\geq 8 \mathrm{~h} /$ day were associated with a 1.2-1.5-fold increases in mortality, compared to regular sleep and sleep duration of 6 to $<8 \mathrm{~h} /$ day. Conclusions: Our study shows an association between sleep irregularity and all-cause mortality in a large Japanese population. Our findings provide further confirmation of the need to consider not only sleep duration, but also the regularity aspect of sleep schedules.
Author Comments:	

Title: Irregular sleep and all-cause mortality: a large prospective cohort study

Chie Omichi ${ }^{1,2,3}, \mathrm{PhD}$, Teruhide Koyama ${ }^{1}$, PhD , Hiroshi Kadotani ${ }^{2}$, PhD, MD, Etsuko Ozaki ${ }^{1}$, PhD, Satomi Tomida ${ }^{1,4}$, PhD, MD, Tamami Yoshida ${ }^{1}$, MS, Jun Otonari ${ }^{5,6}$, PhD, MD, Hiroaki Ikezaki ${ }^{7,8}$, PhD, MD, Megumi Hara ${ }^{9}$, PhD, MD, Keitaro Tanaka ${ }^{9}$, PhD, MD, Takashi Tamura ${ }^{10}$, PhD, Mako Nagayoshi ${ }^{10}, \mathrm{PhD}$, Rieko Okada ${ }^{10}$, $\mathrm{PhD}, \mathrm{MD}$, Yoko Kubo ${ }^{10}$, BA, Isao Oze ${ }^{11}$, PhD , MD, Keitaro Matsuo ${ }^{11,12}, \mathrm{PhD}, \mathrm{MD}$, Yohko Nakamura ${ }^{13}$, PhD, Miho Kusakabe ${ }^{13}$, DVM, Rie Ibusuki ${ }^{14}$, PhD, Kenichi Shibuya ${ }^{14,15}$, MD, Sadao Suzuki ${ }^{16}$, PhD , MD, Miki Watanabe ${ }^{16}$, PhD , Kiyonori Kuriki ${ }^{17}$, PhD, Naoyuki Takashima ${ }^{18,19}$, PhD , MD, Aya Kadota ${ }^{18}$, PhD, MD, Sakurako Katsuura-Kamano ${ }^{20}$, PhD, Kokichi Arisawa ${ }^{20}$, PhD, MD, Kenji Takeuchi ${ }^{10}$, PhD, DDS, Kenji Wakai ${ }^{10}$, PhD, MD, and the J-MICC Study Group
${ }^{1}$ Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
${ }^{2}$ Department of Psychiatry, Shiga University of Medical Science, Shiga 520-2192, Japan
${ }^{3}$ Department of Hygiene and Public Health, Osaka Medical and Pharmaceutical University, 20-7, daigaku-machi, Takatsuki, 569-8686, Japan.
${ }^{4}$ Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
${ }^{5}$ Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University
${ }^{6}$ Department of Psychosomatic Medicine, International University of Health and Welfare Narita Hospital
${ }^{7}$ Department of General Internal Medicine, Kyushu University Hospital
${ }^{8}$ Department of Comprehensive General Internal Medicine, Kyushu University Faculty of Medical Sciences

${ }^{9}$ Department of Preventive Medicine, Faculty of Medicine, Saga University
${ }^{10}$ Department of Preventive Medicine, Nagoya University Graduate School of Medicine
${ }^{11}$ Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
${ }^{12}$ Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine
${ }^{13}$ Cancer Prevention Center, Chiba Cancer Center Research Institute
${ }^{14}$ Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
${ }^{15}$ Department of Emergency, Kagoshima Prefectural Oshima Hospital
${ }^{16}$ Department of Public Health, Nagoya City University Graduate School of Medical Sciences
${ }^{17}$ Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka
${ }^{18}$ Department of Public Health, Shiga University of Medical Science
${ }^{19}$ Department of Public Health, Kinki University Faculty of Medicine
${ }^{20}$ Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences

*Corresponding author: Teruhide Koyama
Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine

465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
E-mail: tkoyama@koto.kpu-m.ac.jp
Tel: +81-75-251-5789
Fax: +81-75-251-5799

Word count
28669

Abstract

Objectives: Previous studies using objective parameters have shown that irregular sleep is associated with the disease incidence, progression, or mortality. This study aimed to determine the association between subjective sleep duration and sleep regularity, with mortality in a large population.

Methods: Participants were from the Japan Multi-Institutional Collaborative Cohort study. We obtained information from each participant on sleep duration, sleep regularity, and demographics and overall lifestyle using self-administered questionnaires. We defined sleep regularity according to participants' subjective assessment of sleep/wake time regularity. Participants ($\mathrm{n}=81,382$, mean age: 58.1 ± 9.1 years, males: 44.2%) were classified into six groups according to sleep duration and sleep regularity. Hazard ratios (HR) for time-to-event of death were calculated using the Cox proportional hazards model.

Results: The mean follow-up period was 9.1 years and the mean sleep duration was $6.6 \mathrm{~h} /$ day . Irregular sleep significantly increased the risk of all-cause mortality in all models compared with regular sleep (HR 1.30, 95% confidence interval; CI, 1.18-1.44), regardless of sleep duration. Multivariable analysis of the six groups by sleep pattern (sleep regularity and duration) showed irregular sleep and sleep durations of $<6 \mathrm{~h} /$ day, 6 to $<8 \mathrm{~h} /$ day, or $\geq 8 \mathrm{~h} /$ day were associated with a 1.2-1.5-fold increases in mortality, compared to regular sleep and sleep duration of 6 to $<8 \mathrm{~h} /$ day. Conclusions: Our study shows an association between sleep irregularity and all-cause mortality in a large Japanese population. Our findings provide further confirmation of the need to consider not only sleep duration, but also the regularity aspect of sleep schedules.

Keywords

sleep regularity, all-cause mortality, sleep duration

Introduction

Sleep duration and timing are considered components of sleep health. Buysee et al. defined sleep health as a multidimensional pattern of sleep-wakefulness, that was adapted to individual, social, and environmental demands. Sleep health promotes physical and mental well-being and good sleep health is characterized by subjective satisfaction, appropriate timing, adequate duration, high efficiency, and sustained alertness during waking hours ${ }^{1}$.

In recent years, many studies have shown that either too little or too much sleep increases the risk of mortality from all-causes ${ }^{2}$, cardiovascular disease (CVD) $)^{3,4}$ and cancer ${ }^{2,5}$. In addition, several studies have shown that greater variability in sleep duration and timing is associated with an abnormal metabolic profile, including elevated blood pressure, dysregulation of blood lipids, and insulin resistance ${ }^{6,7}$. A meta-analysis of prospective cohort studies suggested a U-shaped curvilinear association with the lowest risk of all-cause mortality when sleep duration was about $7 \mathrm{~h} /$ day; both shorter and longer sleep duration were associated with an increased risk of all-cause mortality ${ }^{8}$.

One factor affecting health is disruption of circadian rhythms. Recent reports indicate that chronic circadian rhythm disturbances are ubiquitous exposures that affect health that accumulate over time ${ }^{9,10,11}$. Social and environmental factors that disrupt circadian rhythms include shift work, which has been linked to CVD ${ }^{12,13}$ and breast cancer ${ }^{14}$. Previous studies have shown that irregular sleep pattern is as detrimental to health as inadequate sleep ${ }^{15-18}$. Taylor et al. examined the relationship between variability in sleep timing and metabolic health in non-shift workers in a cohort study in women ${ }^{17}$. They assessed sleep behaviors in midlife
women (aged 48-58 years) using diary-reported bedtimes and wake times. They showed frequent shifts in sleep timing may be related to metabolic health among non-shift working midlife women. Thus, irregular sleep/wake timing may affect metabolic health, even in individuals who have never worked the night shift ${ }^{15,17}$. In addition, we reported from the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study that irregular sleep was associated with metabolic syndrome. The study showed that irregular sleep was more strongly associated with metabolic syndrome than sleep duration or bedtime ${ }^{19}$.

Tianyi H et al. found from a cohort study using actigraphy that irregular sleep might be a new risk factor for CVD, independent of traditional CVD risk factors and the quantity and quality of sleep ${ }^{12}$. Thus, although an association between CVD and irregular sleep has been shown, there are still only a few epidemiological studies on the association between regularity in sleep, other diseases, and mortality, as assessed by subjective.

To objectively assess sleep regularity, the timing and duration of sleep over multiple nights must be assessed, often quantified by the use of actigraphy over several days ${ }^{6}{ }^{17}$. However, few large cohort studies have investigated the association between subjective regular sleep timing and mortality. The aim of this study was to determine the association between subjective sleep time and sleep regularity, respectively or in combination, with mortality in a large Japanese population.

Participants and Methods

Study participants
We included participants from the J-MICC Study, a large cohort study designed to identify and
evaluate gene-environment interactions in the context of lifestyle-related diseases ${ }^{20}$. The participants were individuals aged 35 through 69 years, living in Japan. At the time of the baseline survey, from 2004-2014, the participants completed questionnaires and provided peripheral blood samples. The baseline study participants were recruited from 14 different regions throughout Japan. The study participants were enrolled from the community by mailing invitation letters or distributing leaflets (3 areas), or by recruiting patients at their first visit to a cancer hospital (1 area) or at health checkups (6 areas) ${ }^{20,21}$. Information of participants' deaths were collected from the baseline visit (2004-2014) through December 2017 or December 2018. The dataset used in the present study was fixed on September 1st, 2021, "ver.20210901".

In total, 92,527 individuals participated across 14 cities in Japan. Those with complete information on age, sex, body mass index (BMI), drinking and smoking status, physical activity, history of ischemic heart disease, cancer and stroke, average sleep duration, regularity of sleeping pill use (once a week), and sleep regularity were selected ($\mathrm{n}=85,845$). Those with a follow-up period of 365 days or less $(\mathrm{n}=1,497)$ and those who regularly used sleeping pills $(\mathrm{n}=2,966)$ were excluded, resulting in 81,382 participants across 13 cities for analysis (35,965 men and 45,417 women). Participants in the analytic sample did not differ significantly to those in the full dataset.

Written informed consents were obtained from all study participants. The study protocol was approved by the ethics committees at the Nagoya University Graduate School of Medicine (IRB No. 2010-939) and other institutions participating in the J-MICC study. This study was conducted in accordance with the principles of the World Medical Association Declaration of Helsinki.

Data collection and measurements

At enrollment, a self-administered questionnaire was distributed to all subjects and included questions common to all study areas; a table summarizing common questions covering basic characteristics, lifestyle, and clinical characteristics was provided in the article by Takeuchi et al ${ }^{20}$. We used a standardized self-administered questionnaire to obtain information about each participant's sleep duration (h/day), sleep regularity, education (high school graduate or less, beyond high school, missing), smoking and drinking status (never, former, or current), and daily physical activity duration. Physical activity was assessed in terms of metabolic equivalents (METs), as previously reported ${ }^{22}$. METs-hours per day of activity was estimated by multiplying the reported daily time spent in each activity by the relevant MET intensity.

Information on endpoints such as death was collected through resident cancer registries, if available, lists of patients at major hospitals in the study area, mailed questionnaires to participants, questionnaires at checkups at physical examination facilities, death certificate notes, information from health insurance data, and secondary survey questionnaires ${ }^{23}$. The causes of death were confirmed by vital statistics data based on death certificates, with permission from the Ministry of Health, Labour and Welfare, Japan. Participants who moved out of the study region were excluded from the follow-up at the time of their exit.

Groups by sleep duration and regularity

Detailed information regarding sleep was collected using a questionnaire. Habitual sleep duration
was assessed by asking the following question: "How many hours do you usually sleep? With regard to sleep regularity, the question "Are your bedtimes and wake times regular?" was asked, and the answer was either "regular" or "irregular." Participants were classified into six groups according to sleep duration ($<6 \mathrm{~h} /$ day, 6 to $<8 \mathrm{~h} /$ day, $\geq 8 \mathrm{~h} /$ day) and sleep regularity (regular, irregular). We additionally performed stratified analyses by sex and age ($\geq 60,<60$ years old).

Statistical analyses

Differences in baseline characteristics between the sleep duration and regularity groups were assessed using the chi-squared test or analysis of variance (ANOVA). Hazard ratios (HRs) by sleep duration or regularity (and their 95% confidence intervals) were calculated using the Cox proportional hazards model. Using the 6 to $<8 \mathrm{~h} /$ day and regular sleep group as a reference, the HRs for the other five groups were calculated.

Model 1 was adjusted for age, sex, BMI, and study city. Model 2 was adjusted for age, sex, BMI, study city, education, physical activity, alcohol consumption, and smoking status. Model 3 was adjusted for age, sex, BMI, study city, education, physical activity, alcohol consumption, smoking status, history of ischemic heart disease, history of stroke, and history of cancer. Statistical significance was set at $\mathrm{p}<0.05$. All data were analyzed using the SPSS version 25 (IBM Corp, Armonk, NY).

Results

Baseline characteristics

Of the 92,527 participants, 81,382 were analyzed. Their mean sleep duration was 6.6 (standard deviation [SD] 1.0) h/day. The total follow-up period was 736,319 person-years, with a mean follow-up of 9.01 years. The mortality rate was 4.59 (cases per 1000 person-years).

The baseline characteristics of the participants, stratified by sleep regularity and sleep duration, are shown in Table 1. The age (mean: 58.1 years, SD: 9.1) and proportion of males (54.9%) were significantly higher in the regular and $\geq 8 \mathrm{~h} /$ day sleep group ($\mathrm{p}<0.001$). Mortality rate (per 1,000 person-years) was highest in the irregular and $\geq 8 \mathrm{~h} /$ day sleep group. The highest proportion of current smokers was observed in the irregular and $\geq 8 \mathrm{~h} /$ day sleep group $(28.8 \%, \mathrm{p}<0.001)$, and the highest proportion of people with regular alcohol consumption was observed in the regular and $\geq 8 \mathrm{~h} /$ day sleep group ($59.2 \%, \mathrm{p}<0.001$).

Association of sleep duration and sleep regularity with mortality

The results of the multivariable analysis of all-cause mortality according to the variables in the three models (adjusted HR [95\%CI]) are shown in Table 2. The results showed that irregular sleep significantly increased the risk of all-cause mortality in all models, compared with regular sleep (Model 3, HR 1.30, 95\%CI: 1.18-1.44). Similarly, there was a significantly increased risk of all-cause mortality with a sleep duration $\geq 8 \mathrm{~h} /$ day in all models, compared with a duration of 6 to $<8 \mathrm{~h} /$ day (Model 3, HR 1.15, 95\%CI: 1.05-1.25). By gender, male had a significantly increased risk of all-cause mortality in all models, regardless of age (Model 3, All age: HR 1.31, 95% CI: 1.16-1.48). Female had a significantly increased risk of all-cause mortality in all models
only if they were under 60 years of age (Model 3, HR $1.35,95 \% \mathrm{CI}: 1.06-1.73$).

The results of multivariable analysis in the six groups by sleep pattern (sleep regularity and duration) are shown in Table 3. In models 1 and 2, the HRs for all groups were significantly higher than that for the regular and 6 to $<8 \mathrm{~h} /$ day sleep group. In model 3 , the HRs for the regular and $\geq 8 \mathrm{~h} /$ day sleep group (HR $1.14,95 \% \mathrm{CI}: 1.04-1.24$), irregular and $<6 \mathrm{~h} /$ day sleep group (HR 1.21, 95\%CI 1.02-1.44), irregular and 6 to $<8 \mathrm{~h}$ /day sleep group (HR $1.23,95 \% \mathrm{CI}$ 1.09-1.40), and irregular and $\geq 8 \mathrm{~h} /$ day sleep group (HR $1.52,95 \%$ CI $1.18-1.96$) were significantly increased, compared with the regular and 6 to $\geq 8 h /$ day sleep group.

Discussion

In this large prospective study of approximately 80,000 adult Japanese men and women, it was confirmed that irregular sleep and sleep duration $\leq 6 h /$ day, irregular sleep and sleep duration 6 to $<8 \mathrm{~h} /$ day, or irregular sleep and sleep duration $\geq 8 \mathrm{~h} /$ day were associated with a $1.2-1.5$-fold increases in mortality, compared to a regular and sleep duration of 6 to $<8 \mathrm{~h} /$ day. To the best of our knowledge, our study is the first to demonstrate an association between subjective irregular sleep and all-cause mortality.

There has been a great deal of research on sleep duration and health. Shorter sleep duration has been associated with cognitive decline ${ }^{24}$, obesity ${ }^{25}$, type 2 diabetes ${ }^{25}$, increased risk of CVD, motor vehicle accidents and early death ${ }^{26}$, as well as psychiatric disorders ${ }^{27}$.

In some large-scale prospective studies of adult men and women, there was a robust U -shaped relationship between sleep duration and all-cause mortality, with a nadir at 7 hours of sleep per
day ${ }^{4,28}$. According to a systematic review and meta-analysis of prospective studies of sleep duration and mortality, short sleepers (commonly $<7 \mathrm{~h}$ per night, often $<5 \mathrm{~h}$ per night) have a 12% greater risk, and long sleepers (commonly >8 or 9 h per night) have a 30% greater risk of dying than those sleeping 7 to 8 h per night ${ }^{29}$.

In other studies, only short sleep duration was associated with mortality. Several cohort studies objectively measured sleep duration using polysomnography (PSG) to assess the association between short sleep, insomnia and mortality. The Sleep Heart Health Study reported that short sleep duration only, not insomnia or poor sleep as defined using PSG, was significantly associated with all-cause mortality ${ }^{30}$. Also, the Penn State Cohort previously reported that insomnia with objective short sleep duration was associated with increased mortality in men ${ }^{31}$.

Although many studies have reported that short sleep duration is associated with all-cause mortality, our study showed sleep duration of $>8 \mathrm{~h} /$ day had a risk for mortality. Our study shows that sleep regularity and sleep duration were independently associated with all-cause mortality. It also shows that, when only sleep duration was considered, sleep duration $\geq 8 \mathrm{~h} /$ day was associated with all-cause mortality, while sleep duration $<6 \mathrm{~h} /$ day was not associated. Our report is consistent with results of another recent Japanese cohort study by Svensson T et al. which found that allcause mortality was associated with sleep duration $\geq 8 \mathrm{~h} /$ day but not with $<7 \mathrm{~h} /$ day in both men and women in the multivariable adjusted analysis ${ }^{32}$. The reasons why these results are different from those of others might be due to methodological differences ${ }^{32}$, such as population, size, and adjusting covariates.

Sleep is multidimensional, and it is not limited to sleep duration, which is important for health
and performance. The components of sleep depend not only on sleep duration but also sleep-wake cycle ${ }^{27,33}$. A previous study of sleep regularity indexes suggested that sleep timing and regularity were as important to health and performance as sleep duration ${ }^{34}$. Thus, consistent associations have been reported between irregular sleep and adverse mental and physical health outcomes, such as increased BMI, weight gain, affective disorders, insomnia, and general sleep deprivation ${ }^{35}$. Furthermore, it has been reported that irregular sleep may cause CVD, metabolic syndrome, and diabetes risks, independent of the effect of insufficient sleep ${ }^{19,36,37}$. In summary, regularity of sleep-wake patterns is also considered important in health promotion independent of sleep duration. In this study, a similar trend was confirmed by showing the relationship between allcause mortality and sleep irregularity using a subjective assessment of sleep regularity. Subjective assessment of sleep, along with objective assessment, is considered an important indicator and is essential in clinical practice ${ }^{38}$. No significant differences were reported between subjective sleep duration asked in the questionnaire and sleep diary ${ }^{39}$ or even objective sleep duration measured by sleep encephalography ${ }^{40}$. Our study was an epidemiological study of a large population, and the outcome was mortality. Therefore, we needed a large sample size, and we considered that a simple subjective assessment using a questionnaire would be beneficial. In our study, we could not determine the cause of their irregular sleep, but asked a broad question, "Are your bedtimes and waking times regular?" Therefore, this irregularity includes those due to shift work, discrepancies in sleep time between work and free days, and subjective judgments by individuals in lifestyles that do not have such forms. We observed an association between a simple self-assessment of "not regular" and mortality.

Our study has several strengths, including the use of a prospective design, a large sample of about 80,000 men and women, mortality as outcome, comprehensive baseline information, and variables that are adjustable for lifestyle and activity levels. There has been no cohort study of this size investigating the association between sleep regularity and mortality; the study covered 13 cities in Japan.

There are several limitations that merit consideration. First, the study was limited to a single ethnic group and the findings may not be generalizable to others. Second, we did not investigate the degree or frequency of irregularities. We used subjective questions whether waking and sleeping times were regular. On the other hand, subjective question was also an advantage because it did not require a device and can be used for a large number of participants. Third, the validity of the information concerning sleep irregularity, which was acquired using subjective questionnaires, has not been established; in addition, we did not have data on individual timing preference or morningness-eveningness and we could not determine the cause of their irregular sleep. However, we consider that their versatility, including their many meanings, makes them suitable for application in future epidemiological studies. Forth, we did not have the history of sleep disorders and other chronic illnesses (i.e., HIV, Alzheimer's) and did not use these items in the analysis. Finally, our study is still ongoing, and the number of deaths was small at this stage. We were not able to report the causes of death at this time due to the small number of deaths, but we will be following this population and analyzing the causes of death in the future.

Conclusions

The findings of our study revealed an association between sleep irregularity and all-cause mortality in a large Japanese population. Our findings provide further confirmation of the need to assess not only sleep duration, but also the regularity aspect of sleep schedules in evaluating mortality risk.

Acknowledgements: None.

Disclosure Statement: This study was supported by Grants-in-Aid for Scientific Research for Priority Areas of Cancer (No. 17015018), Innovative Areas (No. 221S0001), and by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant (No. 16H06277 CoBiA) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The authors declare that they have no conflicts of interest.

References

1. Buysse DJ. Sleep health: can we define it? Does it matter? Sleep. 2014;37(1):9-17. https://doi.org/10.5665/sleep. 3298 .
2. Gallicchio L, Kalesan B. Sleep duration and mortality: a systematic review and meta-analysis. J Sleep Res. 2009;18(2):148-158. https://doi.org/10.1111/j.1365-2869.2008.00732.x.
3. Kronholm E, Laatikainen T, Peltonen M, Sippola R, Partonen T. Self-reported sleep duration, allcause mortality, cardiovascular mortality and morbidity in Finland. Sleep Med. 2011;12(3):215221. https://doi.org/10.1016/j.sleep.2010.07.021.
4. Ikehara S, Iso H, Date C, et al. Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep. 2009;32(3):295301. https://doi.org/10.1093/sleep/32.3.295.
5. Ma QQ, Yao Q, Lin L, Chen GC, Yu JB. Sleep duration and total cancer mortality: a meta-analysis of prospective studies. Sleep Med. 2016;27-28:39-44. https://doi.org/10.1016/j.sleep.2016.06.036.
6. Huang T, Redline S. Cross-sectional and Prospective Associations of Actigraphy-Assessed Sleep Regularity With Metabolic Abnormalities: The Multi-Ethnic Study of Atherosclerosis. Diabetes Care. 2019;42(8):1422-1429. https://doi.org/10.2337/dc19-0596.
7. Sohail S, Yu L, Bennett DA, Buchman AS, Lim AS. Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiol Int. 2015;32(6):802-813. https://doi.org/10.3109/07420528.2015.1041597.
8. Yin J, Jin X, Shan Z, et al. Relationship of Sleep Duration With All-Cause Mortality and Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J Am Heart Assoc. 2017;6(9). https://doi.org/10.1161/jaha.117.005947.
9. Scheer FA, Michelson AD, Frelinger AL, 3rd, et al. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One. 2011;6(9):e24549. https://doi.org/10.1371/journal.pone. 0024549.
10. Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol. 1999;277(4 Pt 2):R1152-1163. https://doi.org/10.1152/ajpregu.1999.277.4.r1152.
11. Erren TC, Lewis P. Hypothesis: ubiquitous circadian disruption can cause cancer. Eur J Epidemiol. 2019;34(1):1-4. https://doi.org/10.1007/s10654-018-0469-6.
12. Huang T, Mariani S, Redline S. Sleep Irregularity and Risk of Cardiovascular Events: The MultiEthnic Study of Atherosclerosis. J Am Coll Cardiol. 2020;75(9):991-999. https://doi.org/10.1016/j.jacc.2019.12.054.
13. Vyas MV, Garg AX, Iansavichus AV, et al. Shift work and vascular events: systematic review and meta-analysis. Bmj. 2012;345:e4800. https://doi.org/10.1136/bmj.e4800.
14. Wegrzyn LR, Tamimi RM, Rosner BA, et al. Rotating Night-Shift Work and the Risk of Breast Cancer in the Nurses' Health Studies. Am J Epidemiol. 2017;186(5):532-540. https://doi.org/10.1093/aje/kwx140.
15. Gooley JJ. How Much Day-To-Day Variability in Sleep Timing Is Unhealthy? Sleep. 2016;39(2):269-270. https://doi.org/10.5665/sleep. 5424.
16. De Bacquer D, Van Risseghem M, Clays E, Kittel F, De Backer G, Braeckman L. Rotating shift
work and the metabolic syndrome: a prospective study. Int J Epidemiol. 2009;38(3):848-854. https://doi.org/10.1093/ije/dyn360.
17. Taylor BJ, Matthews KA, Hasler BP, et al. Bedtime Variability and Metabolic Health in Midlife Women: The SWAN Sleep Study. Sleep. 2016;39(2):457-465. https://doi.org/10.5665/sleep.5464.
18. Parsons MJ, Moffitt TE, Gregory AM, et al. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes (Lond). 2015;39(5):842-848. https://doi.org/10.1038/ijo.2014.201.
19. Ogura Y, Koyama T, Ozaki E, Omichi C, Uehara R. Subjective irregular sleep is associated with metabolic syndrome: A cross-sectional study. Prev Med Rep. 2022;28:101844. https://doi.org/10.1016/j.pmedr.2022.101844.
20. Takeuchi K, Naito M, Kawai S, et al. Study Profile of the Japan Multi-institutional Collaborative Cohort (J-MICC) Study. J Epidemiol. 2021;31(12):660-668. https://doi.org/10.2188/jea.JE20200147.
21. Wakai K, Hamajima N, Okada R, et al. Profile of participants and genotype distributions of 108 polymorphisms in a cross-sectional study of associations of genotypes with lifestyle and clinical factors: a project in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. J Epidemiol. 2011;21(3):223-235. https://doi.org/10.2188/jea.je20100139.
22. Hara M, Higaki Y, Taguchi N, et al. Effect of the PPARG2 Pro12Ala polymorphism and clinical risk factors for diabetes mellitus on HbA1c in the Japanese general population. J Epidemiol. 2012;22(6):523-531. https://doi.org/10.2188/jea.JE20120078.
23. Hamajima N. The Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study) to detect gene-environment interactions for cancer. Asian Pac J Cancer Prev. 2007;8(2):317-323.
24. Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007;3(5):519-528.
25. Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev. 2007;11(3):163-178. https://doi.org/10.1016/j.smrv.2007.01.002.
26. Cappuccio FP, Cooper D, D'Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32(12):1484-1492. https://doi.org/10.1093/eurheartj/ehr007.
27. Benca RM, Obermeyer WH, Thisted RA, Gillin JC. Sleep and psychiatric disorders. A metaanalysis. Arch Gen Psychiatry. 1992;49(8):651-668; discussion 669-670. https://doi.org/10.1001/archpsyc.1992.01820080059010.
28. Tamakoshi A, Ohno Y. Self-reported sleep duration as a predictor of all-cause mortality: results from the JACC study, Japan. Sleep. 2004;27(1):51-54.
29. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585-592. https://doi.org/10.1093/sleep/33.5.585.
30. Bertisch SM, Pollock BD, Mittleman MA, et al. Insomnia with objective short sleep duration and risk of incident cardiovascular disease and all-cause mortality: Sleep Heart Health Study. Sleep. 2018;41(6). https://doi.org/10.1093/sleep/zsy047.
31. Vgontzas AN, Liao D, Pejovic S, et al. Insomnia with short sleep duration and mortality: the Penn State cohort. Sleep. 2010;33(9):1159-1164. https://doi.org/10.1093/sleep/33.9.1159.
32. Svensson T, Inoue M, Saito E, et al. The Association Between Habitual Sleep Duration and Mortality According to Sex and Age: The Japan Public Health Center-based Prospective Study. J Epidemiol. 2021;31(2):109-118. https://doi.org/10.2188/jea.JE20190210.
33. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15(5 Pt 1):3526-3538. https://doi.org/10.1523/jneurosci.15-0503526.1995 .
34. Phillips AJK, Clerx WM, O'Brien CS, et al. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep. 2017;7(1):3216. https://doi.org/10.1038/s41598-017-03171-4.
35. Bei B, Wiley JF, Trinder J, Manber R. Beyond the mean: A systematic review on the correlates of daily intraindividual variability of sleep/wake patterns. Sleep Med Rev. 2016;28:108-124. https://doi.org/10.1016/j.smrv.2015.06.003.
36. Morris CJ, Purvis TE, Mistretta J, Hu K, Scheer F. Circadian Misalignment Increases C-Reactive Protein and Blood Pressure in Chronic Shift Workers. J Biol Rhythms. 2017;32(2):154-164. https://doi.org/10.1177/0748730417697537.
37. Leproult R, Holmbäck U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63(6):1860-1869. https://doi.org/10.2337/db13-1546.
38. McElroy H, O'Leary B, Adena M, Campbell R, Monfared AAT, Meier G. Comparative efficacy of lemborexant and other insomnia treatments: a network meta-analysis. J Manag Care Spec Pharm. 2021;27(9):1296-1308. https://doi.org/10.18553/jmcp.2021.21011.
39. Nakayama-Ashida Y, Takegami M, Chin K, et al. Sleep-disordered breathing in the usual lifestyle setting as detected with home monitoring in a population of working men in Japan. Sleep. 2008;31(3):419-425. https://doi.org/10.1093/sleep/31.3.419.
40. Omichi C, Kadotani H, Sumi Y, et al. Prolonged Sleep Latency and Reduced REM Latency Are Associated with Depressive Symptoms in a Japanese Working Population. Int J Environ Res Public Health. 2022;19(4). https://doi.org/10.3390/ijerph19042112.

Table 1. Baseline characteristics and follow-up data according to sleep pattern

Sleep duration	Regular sleep						Irregular sleep						p-value
	<6 h/day		6 to <8 h/day		$\geq 8 \mathrm{~h} /$ day		<6 h/day		6 to <8 h/day		$\geq 8 \mathrm{~h} /$ day		
n (\%)	9,458	11.6	50,618	62.2	11,538	14.2	3,112	3.8	5,775	7.1	881	1.1	
Age, years, mean (SD)	54.6	9.5	55.1	9.2	58.1	9.1	53.1	9.6	53.4	9.4	54.6	10.0	<0.001
Sex, man, n (\%)	3,727	39.4\%	21,571	42.6\%	6,336	54.9\%	1,221	39.2\%	2,642	45.7\%	468	53.1\%	<0.001
Death	379		1,858		662		142		274		61		
Person-years	85,082		457,795		105,242		27,939		52,279		7,982		
Mortality rate (per 1,000 person-years)	4.5		4.1		6.3		5.1		5.2		7.6		
BMI, kg/m ${ }^{2}$ (SD)	23.0	3.5	22.8	3.2	23.0	3.2	23.7	3.7	23.5	3.5	23.5	3.5	0.121
Smoking status, n (\%)													
Current	1,481	15.7\%	7,795	15.4\%	2,164	18.8\%	729	23.4\%	1,440	24.9\%	254	28.8\%	
Past	1,944	20.6\%	11,183	22.1\%	3,217	27.9\%	567	18.2\%	1,174	20.3\%	213	24.2\%	<0.001
Never	6,033	63.8\%	31,640	62.5\%	6,157	53.4\%	1,816	58.4\%	3,161	54.7\%	414	47.0\%	
Alcohol consumption, n (\%)													
Current	4,951	52.3\%	27,256	53.8\%	6,834	59.2\%	1,540	49.5\%	3,137	54.3\%	518	58.8\%	
Past	267	2.8\%	1,238	2.4\%	361	3.1\%	108	3.5\%	173	3.0\%	37	4.2\%	<0.001
Never	4,240	44.8\%	22,124	43.7\%	4,343	37.6\%	1,464	47.0\%	2,465	42.7\%	326	37.0\%	
Physical activity (METs • hours/day)(SD)	15.1	13.6	14.1	12.4	15.7	13.8	15.5	13.9	14.9	13.5	13.5	13.0	1.000
Education, n (\%)													
Missing	3,688	12.1\%	19,939	65.3\%	3,448	11.3\%	1,099	3.6\%	2,076	6.8\%	280	0.9\%	
High school graduate or less	2,316	12.1\%	11,548	60.2\%	3,089	16.1\%	723	3.8\%	1,258	6.6\%	233	1.2\%	<0.001
Beyond high school	3,454	10.9\%	19,131	60.4\%	5,001	15.8\%	1,290	4.1\%	2,411	7.7\%	368	1.2\%	
History of ischemic heart disease, n (\%)													
Current	147	1.6\%	697	1.4\%	236	2.0\%	60	1.9\%	76	1.3\%	22	2.5\%	<0.001

16														
17														
18														
19														
20														
21														
22														
23	Past	109	1.2\%	560	1.1\%	139	1.2\%	44	1.4\%	68	1.2\%	17	1.9\%	
24 25	Never	9,202	97.3\%	49,361	97.5\%	11,163	96.7\%	3,008	96.7\%	5,631	97.5\%	842	95.6\%	
26	History of cancer, n (\%)													
27	Current	222	2.3\%	1,308	2.6\%	376	3.3\%	110	3.5\%	167	2.9\%	28	3.2\%	
28 29	Past	334	3.5\%	1,723	3.4\%	430	3.7\%	87	2.8\%	153	2.6\%	33	3.7\%	<0.001
30	Never	8,902	94.1\%	47,587	94.0\%	10,732	93.0\%	2,915	93.7\%	5,455	94.5\%	820	93.1\%	
31	History of stroke, n (\%)													
33	Current	70	0.7\%	273	0.5\%	107	0.9\%	14	0.4\%	32	0.6\%	7	0.8\%	
34	Past	98	1.0\%	471	0.9\%	150	1.3\%	26	0.8\%	55	1.0\%	14	1.6\%	<0.001
35 36	Never	9,290	98.2\%	49,874	98.5\%	11,281	97.8\%	3,072	98.7\%	5,688	98.5\%	860	97.6\%	

SD, standard deviation; BMI, body mass index; METs, metabolic equivalents

17						<60 years			≥ 60 years		
18			HR	95\%CI	p-value	HR	95\%CI	p-value	HR	95\%CI	p-value
$\begin{aligned} & 2 \otimes 11 \\ & 2 \mathrm{~A} 11 \end{aligned}$											
2Afodel 1	Irregular sleep		1.39	1.26-1.54	<0.001	1.37	1.18-1.60	<0.001	1.24	1.09-1.42	<0.001
23 -											0.300
25	Sleep duration	6 to $<8 \mathrm{~h} /$ day	Reference			Reference			Reference		
27		$\geq 8 \mathrm{~h} /$ day	1.25	1.15-1.36	<0.001	1.21	0.99-1.48	0.070	1.04	0.91-1.20	0.560
$\begin{aligned} & 28 \\ & 2 \text { glodel } 2 \end{aligned}$	Irregular sleep		1.31	1.19-1.45	<0.001	1.29	1.11-1.50	0.001	1.16	1.02-1.33	0.030
30		$<6 \mathrm{~h} /$ day	1.09	0.99-1.20	0.085	1.12	0.95-1.31	0.170	1.05	0.93-1.19	0.440
		6 to <8 h/day	Reference			Reference			Reference		
32 34		$\geq 8 \mathrm{~h} /$ day	1.17	1.08-1.28	<0.001	1.36	1.16-1.59	<0.001	1.08	0.98-1.19	0.140
$3 \sqrt{\text { Fodel }} 3$	Irregular sleep		1.30	1.18-1.44	<0.001	1.33	1.14-1.55	<0.001	1.15	1.00-1.31	0.044
											0.600
38 39	Sleep duration	6 to $<8 \mathrm{~h} /$ day	Reference			Reference			Reference		
40		$\geq 8 \mathrm{~h} /$ day	1.15	1.05-1.25	0.002	1.31	1.11-1.53	0.001	1.06	0.96-1.17	0.260
${ }^{4}$ Hale42											
4ßodel 1	Irregular sleep		1.40	1.23-1.58	0.001	1.34	1.11-1.63	0.003	1.42	1.21-1.65	<0.001
44		$<6 \mathrm{~h} /$ day	0.82	0.73-0.92	0.001	0.13	0.62-0.95	0.770	0.85	0.74-0.99	0.035
45 46	Sleep duration	6 to <8h/day	Reference			Reference			Reference		
47		$\geq 8 \mathrm{~h} /$ day	0.93	0.81-1.07	0.301	0.95	0.74-1.24	0.730	0.93	0.79-1.09	0.360
48 49	Irregular sleep		1.31	1.16-1.47	<0.001	1.26	1.04-1.53	0.020	1.32	1.13-1.54	0.001
50	Sleep duration	$<6 \mathrm{~h} /$ day	1.20	1.06-1.35	0.003	1.25	1.02-1.54	0.030	1.15	0.99-1.33	0.070
51	ep duration	6 to <8h/day	Reference			Reference			Reference		

Table 3. Hazard ratios and their confidence intervals for mortality according to sleep pattern

Sleep duration		Regular sleep			Irregular sleep		
		$<6 \mathrm{~h} /$ day	6 to <8 h/day	$\geq 8 \mathrm{~h} /$ day	<6 h/day	6 to <8h/day	$\geq 8 \mathrm{~h} /$ day
Model 1, HR		1.14	Reference	1.19	1.33	1.34	1.71
	95\%CI	1.02-1.28		1.09-1.30	1.12-1.57	1.18-1.52	1.33-2.21
Model 2, HR		1.12	Reference	1.16	1.23	1.24	1.55
	95\%CI	1.00-1.27		1.06-1.27	1.03-1.46	1.09-1.40	1.20-2.00
Model 3, HR		1.11	Reference	1.14	1.21	1.23	1.52
	95\%CI	0.99-1.24		1.04-1.24	1.02-1.44	1.09-1.40	1.18-1.96

HR, hazard ratio; CI, confidence interval
Model 1 was adjusted for age, sex, body mass index, study city
Model 2 was adjusted for age, sex, body mass index, sleep duration, study city, education, physical activity, alcohol consumption, smoking status, Model 3 was adjusted for age, sex, body mass index, sleep duration, study city, education, physical activity, alcohol consumption, smoking status, history of ischemic heart disease, history of stroke, history of cancer

