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Abstract

Purpose

To assess the interaction between ranibizumab, aflibercept, and mouse vascular endothelial

growth factor (VEGF), both in vivo and in vitro.

Methods

In vivo, the effect of intravitreal injection of ranibizumab and aflibercept on oxygen induced

retinopathy (OIR) and the effect of multiple intraperitoneal injections of ranibizumab and afli-

bercept on neonatal mice were assessed. In vitro, the interaction of mouse VEGF-A with afli-

bercept or ranibizumab as the primary antibody was analyzed by Western blot.

Results

In both experiments using intravitreal injections in OIR mice and multiple intraperitoneal

injections in neonatal mice, anti-VEGF effects were observed with aflibercept, but not with

ranibizumab. Western blot analysis showed immunoreactive bands for mouse VEGF-A in

the aflibercept-probed blot, but not in the ranibizumab-probed blot.

Conclusions

Aflibercept but not ranibizumab interacts with mouse VEGF, both in vivo and in vitro. When

conducting experiments using anti-VEGF drugs in mice, aflibercept is suitable, but ranibizu-

mab is not.

Introduction

Intravitreal anti-VEGF injection has been a first line choice for the treatment of major

retinal vascular diseases including age-related macular degeneration [1–3], diabetic macular

edema [4, 5], macular edema due to retinal vein occlusion [6–8], myopic choroidal neovascu-

larization [9], and retinopathy of prematurity [10, 11]. Currently, bevacizumab, ranibizumab,

aflibercept, brolcizumab and faricimab are the major anti-VEGF drugs in ophthalmic practice
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[12]. Accordingly, bevacizumab [13–16], ranibizumab [17–23], and aflibercept [24–28] are fre-

quently used in experiments with mouse models of retinal vascular diseases. Notably, Ferrara

N et al. reported that bevacizumab’s ability to neutralize VEGF was species specific and lacking

in mice [29, 30]. It indicates that some types of anti-human VEGF antibody may be unsuitable

for experiments in mice. Ranibizumab, a humanized monoclonal antibody Fab fragment, has

the same structure as bevacizumab Fab except for five amino acids although ranibizumab and

bevacizumab were generated from different anti-VEGF Fab fragments [31]. Aflibercept is a

recombinant fusion protein, and its VEGF-binding portion consists of the extracellular

domains from “human” VEGF receptors 1 and 2 [32]. Therefore, it is possible that ranibizu-

mab and aflibercept may lack the ability to neutralize mouse VEGF as bevacizumab. To the

best of our knowledge, however, there is no report focusing on the interaction between ranibi-

zumab, aflibercept, and mouse VEGF. The purpose of this study is to assess the interactions of

mouse VEGF with ranibizumab or aflibercept, both in vivo and in vitro.

Materials and methods

Mice and tissue collection

All animal experiments were performed using C57BL/6J mice, their use for experimental

purposes was approved by the Research Center for Life Sciences, Shiga University of Medical

Science in accordance with institutional and governmental guidelines (Permit Number:

2021-4-8), and all animal procedures were adherent to the ARVO Statement for the Use of

Animals in Ophthalmic and Vision Research. Euthanasia for tissue sample collection was

achieved by performing cardiac puncture exsanguination under isoflurane anesthesia. The

right atrium was then pierced and 5 mL of phosphate-buffered saline solution (PBS) was per-

fused through the left ventricle. Right after, 5 mL of 4% paraformaldehyde (PFA) at 4˚C was

perfused in the same manner to start fixation of the tissues [28]. A total of 46 mice were used

for this study.

Oxygen induced retinopathy model and intraocular injection

An oxygen induced retinopathy (OIR) model using C57BL/6J mouse neonates was produced

as previously described [28]. Briefly, at postnatal day (P) 8, mice with nursing mothers were

exposed to 85% oxygen for 3 consecutive days. At P11, the mice were removed from the oxy-

gen chamber and returned to room air. Intraocular injections of 0.5 μL of PBS, 20 μg of afliber-

cept (0.5 μL of Eylea1, Bayer AG, Leverkusen, Germany) or 5 μg of ranibizumab (0.5 μL of

Lucentis1, Novartis Pharma K.K., Tokyo, Japan) into the vitreous body were performed

under isoflurane anesthesia at P12 using 33-gauge needles (ITO Corporation, Shizuoka,

Japan). To minimize the effects of individual differences, littermates were divided into the

above three groups. In our previous study [28], we analyzed OIR retinas 2 days (P14) and 4

days (P16) after intravitreal aflibercept injections and found that the anti-VEGF effects of

aflibercept were stronger on P14 than on P16. Therefore, we analyzed OIR retinas 2 days after

injections (P14) in this study.

Multiple intraperitoneal injections in neonatal mice

PBS, 10 mg/kg of aflibercept, or 2.5 mg/kg or 10 mg/kg of ranibizumab was intraperitoneally

injected into C57BL/6J mouse neonates daily from P3 to P6. To minimize the effects of in-

dividual differences, littermates were divided into the above four groups. The mice were

weighed at all time points of injection. At P6, eyes and kidneys were harvested 6 hours after

the last injection.

PLOS ONE Effect of ranibizumab and aflibercept on mouse VEGF

PLOS ONE | https://doi.org/10.1371/journal.pone.0278951 December 21, 2022 2 / 12

Funding: This work was supported by grants-in-aid

for Scientific Research on Innovative Areas from

the Ministry of Education, Culture, Sports, Science,

and Technology of Japan (19K18877). This

funding organization had no role in the design or

conduct of this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0278951


Immunohistochemistry

Whole-mounted retinas and pupillary membranes were produced according to previous

reports [28, 33]. Enucleated eyes were fixed for 30 minutes in 4% PFA at room temperature. A

small hole was made in the cornea using a 27-gauge needle, and a circular incision was made

using fine scissors. Then, retinal cups and pupillary membranes were dissected from the eyes

and postfixed for 30 minutes in 4% PFA at 4˚C. Kidneys were fixed overnight in 4% PFA,

snap-frozen in optimal cutting temperature (OCT) compound (Sakura Finetek USA, Inc., Tor-

rance, CA, USA), and sectioned to a thickness of 12 μm.

The primary antibodies were biotinylated isolectin B4 (iB4, B-1205; 1:500; Vector Laborato-

ries Inc., Burlingame, CA, USA), anti-CD31 (ab119341; 1:1000; Abcam plc, Cambridge, UK),

anti-Ter119 (MAB1125; 1:250; R&D Systems, Inc.), anti-collagen IV (2150–1470; 1:500; Bio-

Rad Laboratories, Inc.), and anti-Erg (ab92513; 1:2000; Abcam plc, Cambridge, UK). The sec-

ondary antibodies were suitable species-specific secondary antibodies (Jackson ImmunoRe-

search Laboratories, Inc., West Grove, PA, USA) or streptavidin coupled to Alexa Fluor dyes

(Invitrogen, Waltham, MA, USA). For nuclear staining, specimens were treated with DAPI

(Santa Cruz Biotechnology, Inc., Dallas, TX, USA).

Perfusion with FITC-dextran

FITC-dextran perfusion was performed as previously described [20]. Briefly, 1 mL of PBS con-

taining 50 mg of fluorescein-dextran (Sigma-Aldrich, St. Louis, MO) was injected into the left

ventricle under deep anesthesia. Eyes were enucleated and fixed for 40 minutes in 4% PFA at

room temperature. A small hole was made in the cornea using a 27-gauge needle, and a circu-

lar incision was made using fine scissors. Retinal cups were then dissected from the eyes, flat-

mounted onto glass slides, and postfixed for 60 minutes in 4% PFA at 4˚C.

Proliferation assay in vivo

For in vivo analysis of cell proliferation, 5 μg of 5-ethynyl-2-deoxyuridine (EdU, C10337; Invi-

trogen) per gram of body weight was injected intraperitoneally 2 hours before sacrifice. Retinas

were dissected and immunostained as described above. After secondary antibody staining,

EdU labeling was detected by means of a Click-it EdU Alexa Fluor-488 Imaging Kit (C10337;

Invitrogen) according to the manufacturer’s instructions.

Image acquisition and quantification

All fluorescence images were obtained using a confocal laser-scanning microscope (Leica TCS

SP8, Leica Microsystems GmbH, Wetzlar, Germany). The image-based quantification methods

are described in previous reports [28, 33–35]. The ratio of the avascular area to the whole retinal

area (% avascular area), the ratio of the neovascular tufts area to the whole retinal area (% NVT

area), the ratio of the Ter119+ area to the whole retinal area (% Ter119+ area), the distance from

the optic disc to the vascular front (radial growth), and total pupillary vessel length were manu-

ally measured using ImageJ software by an investigator masked to treatment assignment. The

sinuosity index of retinal vessels was calculated using the following formula: The sinuosity

index = total curvilinear length of retinal vessels / total Euclidean distance between vascular

branching points. The vessel density was calculated by using a binarization method. The

col4+CD31- area was considered as the area of regressed capillaries according to previous reports

[36, 37], and the ratio of the col4+CD31- area to the total col4+ area (% area of regressed capillar-

ies) was calculated. To quantify the number of endothelial cells (ECs), the EC-specific nuclear

marker (Erg) was used and EdU+Erg+ cells were considered to be proliferating ECs [38].
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Western blot analysis

The constituent proteins in 100, 50, or 25 ng of Spodoptera frugiperda insect cell (Sf 21)-

derived recombinant human VEGF 165 protein (R&D Systems, Inc., Minneapolis, MN, USA),

Sf 21-derived recombinant mouse VEGF 164 protein (R&D Systems, Inc), E. coli-derived

human VEGF 121 protein (R&D Systems, Inc), or E. coli-derived mouse VEGF 120 protein

(R&D Systems, Inc) were separated by SDS-PAGE and transferred to polyvinylidene difluoride

membranes (Bio-Rad Laboratories, Inc., Hercules, CA, USA). After blocking by 5% skim milk,

the blots were incubated with aflibercept or ranibizumab at a final concentration of 1 μg/mL

followed by anti-human IgG polyclonal antibody conjugated with horseradish peroxidase (for

aflibercept) or an anti-human IgG F(ab’)2 fragment-specific polyclonal antibody conjugated

with horseradish peroxidase (for ranibizumab). Horseradish peroxidase activity was visualized

using an enhanced chemiluminescence (ECL) detection system (FUJIFILM Wako Pure Chem-

ical Corporation, Osaka, Japan).

Statistical analysis

All statistical analyses were conducted using SPSS statistics (version 22; International Business

Machines Co. Limited, New York, NY, USA). One-way analysis of variance was used for com-

parison between independent groups. A value of P<0.05 was considered statistically significant.

Results

No effect of intravitreal ranibizumab injection in OIR mice

To evaluate the neutralization of mouse VEGF by aflibercept and ranibizumab in vivo, we first

examined retinal vascular structural changes after intravitreal injection of aflibercept and rani-

bizumab in oxygen-induced-retinopathy (OIR) model mice (Fig 1, n = 7 /group). When com-

pared to PBS-injected eyes, aflibercept-injected eyes showed neovascular tufts (NVT) area

reduction (P = 0.02, Fig 1C), avascular area enlargement (P<0.01, Fig 1D), and decreased sinu-

osity of retinal vessels (P<0.01, Fig 1E). In ranibizumab-injected eyes, however, the NVT area

(P = 1.00, Fig 1C), avascular area (P = 0.95, Fig 1D), and sinuosity of retinal vessels (P = 0.92,

Fig 1E) were comparable with those of PBS injected eyes.

Next, we observed retinas using fluorescein isothiocyanate (FITC)-dextran perfusion in

OIR mice and found that retinal vascular permeability was suppressed in aflibercept-treated

eyes, but not in ranibizumab-treated eyes (Fig 1F).

No effect of multiple intraperitoneal ranibizumab injections in neonatal

mice

As described above, no retinal vascular change was observed after a single intravitreal ranibizu-

mab injection in the analysis using OIR model mice. However, some neutralization of mouse

VEGF might be observed by increasing the dose or frequency of ranibizumab administration.

Since it is difficult to administer a large amount of drug or multiple doses of drug via intravi-

treal injection, we conducted the examination using multiple intraperitoneal injection of a

large amount of anti-VEGF drugs in neonatal mice (Fig 2A). Based on a previous report show-

ing that intraperitoneal administration of 10 mg/kg of aflibercept in developing mice causes

severe developmental defects [26], we injected 10 mg/kg of aflibercept intraperitoneally in the

aflibercept group. Because 0.5mg of ranibizumab is usually administered for every 2 mg of afli-

bercept in human clinical practice, the low-dose ranibizumab group received 2.5 mg/kg of

ranibizumab, corresponding to one-quarter of the dose of aflibercept. The high-dose ranibizu-

mab group received 10 mg/kg of ranibizumab, corresponding to the full dose of aflibercept.
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After 4 intraperitoneal injections of PBS (n = 7), aflibercept (10 mg/kg, n = 6), or a low (2.5

mg/kg, n = 6) or high (10 mg/kg, n = 6) dose of ranibizumab, body weight gain in pups treated

with aflibercept was significantly impaired comparing with other three groups (P<0.01, Fig

2B). The body weight gain in pups treated with 2.5 mg/kg or 10 mg/kg of ranibizumab was

Fig 1. The effect of intravitreal injection of ranibizumab and aflibercept on oxygen induced retinopathy. (A) A schematic diagram depicting the time

course of our experiment. (B) Whole-mounted stained retinas on day 2 after injection. (C) The reduction of the NVT area was observed in aflibercept

injected eyes, but not in ranibizumab injected eyes. (D) Avascular area enlargement was observed in aflibercept injected eyes, but not in ranibizumab

injected eyes. (E) Decreased sinuosity of the retinal vessel was observed in aflibercept injected eyes, but not in ranibizumab injected eyes. (F) Retinal

vascular permeability was suppressed in aflibercept-treated eyes, but not in ranibizumab-treated eyes (arrowheads). Scale bars represent 1000 μm (B and

upper row of F); 200 μm (lower row of F); ��P<0.01; �P<0.05 (n = 7 /group). Data are presented as mean ± SD. PBS, phosphate-buffered saline solution;

IVA, intravitreal aflibercept; IVR, intravitreal ranibizumab; NVT, neovascular tuft; NS, not significant.

https://doi.org/10.1371/journal.pone.0278951.g001
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Fig 2. The effect of ranibizumab and aflibercept injected intraperitoneally into neonatal mice. (A) A schematic

diagram depicting the time course of our experiment. (B) The body weight gains were impaired in the aflibercept group

but not in the ranibizumab groups. (C-E) The whole-mounted retinas showed apparent retinal hemorrhage (arrowheads)

and vascular growth impairment in the aflibercept group but not in the ranibizumab groups. (F-I) The high magnification

images of the whole-mounted retinas show decreased number of branching points, increased area of regressed capillaries
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comparable with that in PBS treated pups (P = 0.99). The whole-mounted retinas in the afliber-

cept group also showed apparent retinal hemorrhage (arrowheads in Fig 2C), increased

Ter119+ area (P = 0.04, Fig 2D), retinal vascular growth impairment (P = 0.04, Fig 2C and 2E),

decreased number of branching points (P<0.01, Fig 2F and 2G), increased area of col4+CD31-

regressed capillaries (P<0.01, filled arrowheads in Fig 2F and 2H), and decreased number of

EdU+Erg+ proliferating ECs (P<0.01, open arrowheads in Fig 2F and 2I), in contrast to the

ranibizumab groups. Furthermore, decreased pupillary vessel length (P<0.01, Fig 2J and 2K)

and density (P<0.01, Fig 2J and 2L), pathological renal thrombosis (arrowheads in Fig 2M),

decreased renal vessel density (P<0.01, Fig 2M and 2N), and decreased number of glomerular

ECs (P<0.01, Fig 2M and 2O) were observed in the aflibercept group, but not in the ranibizu-

mab groups.

No binding of ranibizumab to mouse VEGF-A in vitro

In vivo experiments showed that ranibizumab had no effect on mice when administered either

by the intravitreal or systemic routes. To verify it in vitro, we performed Western blot analysis

of the binding of human and mouse VEGF-A with aflibercept or ranibizumab as the primary

antibody (Fig 3, S1 and S2 Figs). In the aflibercept-probed blot, immunoreactive bands of the

expected size for both human and mouse VEGF-A were observed. On the other hand, in the

ranibizumab-probed blot, immunoreactive bands were observed for human VEGF-A, but not

for mouse VEGF-A even with long exposure time (10 min).

Discussion

Both in vivo and in vitro, we did not observe any interaction between ranibizumab and mouse

VEGF-A. This is a reasonable result because the structure of ranibizumab is similar to that of

bevacizumab Fab, which lacks the ability to interact with mouse VEGF [29, 30]. Since there are

many articles about the use of ranibizumab as an effective anti-VEGF drug in mice [17–23],

we believe it is necessary to alert ophthalmology researchers against using ranibizumab as an

anti-VEGF drug in the future mouse experiments.

It is unclear why ranibizumab showed anti-VEGF effects in previous reports [17–23], but

we suspect that the use of poor quantitative methods such as fluorescein angiography [19],

immunostaining of retinal sections [18–20], or FITC-dextran perfused retinal flat mounts [18,

20] may have led to different results. Fluorescein angiography is suitable for qualitative analy-

sis, but not quantitative analysis because the amount of flash light and the timing of the pho-

tography after fluorescein injection may cause the results to vary. Immunostaining of retinal

sections is also not suitable for quantitative analysis, especially in retinal vessels, because the

quantitative results greatly depend on the slice position. FITC-dextran perfused retinal flat

mounts have the following weakness: if the perfusion of FITC-dextran injected into the heart

is inadequate, neovascular area may be underestimated and avascular area overestimated,

so it is unsuitable for quantitative evaluation of vascular structure. Unlike these methods,

immunostaining of whole-mounted retina is suitable for quantitative analysis because the

(filled arrowheads), and decreased number of proliferating ECs (open arrowheads) in the aflibercept group but not in the

ranibizumab groups. (J-L) The whole-mounted pupillary membranes showed decreased pupillary vessel length and density

in the aflibercept group but not in the ranibizumab groups. (M-O) The kidney sections showed pathological renal

thrombosis (arrowheads), decreased density of renal vessels, and decreased number of glomerular endothelial cells in the

aflibercept group but not in the ranibizumab groups. Scale bars represent 1000 μm (C, top and middle rows of M); 500 μm

(J); 100 μm (F and bottom row of M); ��P<0.01; �P<0.05 (n = 6–7 /group). ECs, endothelial cells; NS, not significant; PBS,

phosphate-buffered saline solution.

https://doi.org/10.1371/journal.pone.0278951.g002
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entire retinal vascular structure can be observed clearly [28, 34, 38]. In this study, we analyzed

high quality images of whole-mounted retina and found ranibizumab had no effect on retinal

vessels. Another possible reason for the difference between the present results and the results

in the previous reports using ranibizumab may be the different amount of drug injected into

the vitreous. We injected 5 μg of ranibizumab into the vitreous, but previous reports [18–21,

23] have used 1 μg to 10 μg. We cannot completely deny the possibility that ranibizumab

might have had some effect on the OIR retina if we had used 10 μg in this study. However, con-

sidering that the volume of the mouse eye is about 1/400 of that of the human eye [39], 5 μg

(0.5μL of Lucentis1) was a sufficient dose, so we still believe that the drug effect of ranibizu-

mab in mice is very small. In fact, 0.5 μL of Eylea1 has a robust effect on the OIR retina, and it

is clear that ranibizumab has much less effect on mice than aflibercept.

In the in vivo experiments of this study, we first analyzed change in retinal vascular struc-

ture after intravitreal injection of anti-VEGF drugs using OIR mice and found no anti-VEGF

effect of ranibizumab in OIR retina. In this method using OIR model mice, however, small

anti-VEGF effects may be missed because of a large variation in the degree of retinopathy

between individual OIR model mice and because of the dosage limit in ocular administration.

In order to capture even a small anti-VEGF effect, we conducted an additional experiment in

which an extremely large dose of anti-VEGF drug was administered intraperitoneally to neo-

natal mice because there is little variation in vascular development between individual neona-

tal mice. In this additional experiment, we administered 10 mg/kg (87 nmol/kg) of aflibercept,

or 2.5 mg/kg (52 nmol/kg) or 10 mg/kg (208 nmol/kg) of ranibizumab for 4 consecutive days,

which are much higher doses than the dose of aflibercept used as an anti-cancer drug in

humans (35 nmol/kg every two weeks). However, multiple administration of extremely large

doses of ranibizumab to neonatal mice did not cause any change compared to PBS administra-

tion. Although our results could be influenced by the difference in the clearance rate from the

Fig 3. Western blot analysis of the interaction of recombinant human VEGF-A165, and mouse VEGF-A164, human VEGF-A121, and mouse

VEGF-A120 with aflibercept or ranibizumab as the primary antibody. The immunoreactive bands for mouse VEGF-A were observed in the aflibercept-

probed blot, but not in the ranibizumab-probed blot even with long exposure time. VEGF, vascular endothelial growth factor.

https://doi.org/10.1371/journal.pone.0278951.g003
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circulation between ranibizumab and aflibercept [40], we believe our results still suggest that

ranibizumab does not neutralize mouse VEGF.

A limitation of this study is that we only analyze the OIR retina at 2 days after intravitreal

injection of ranibizumab. We used this method because in our previous study [28], we analyzed

OIR retinas 2 days and 4 days after intravitreal aflibercept injections and found that the anti-

VEGF effects of aflibercept were stronger on P14 than on P16. However, it is unclear whether

ranibizumab and aflibercept have the same pharmacokinetics in the mouse eye, and we cannot

rule out the possibility that a slight anti-VEGF effect of ranibizumab could have been detected

if the analysis had been performed at another time point after ranibizumab injection. The other

limitation is lack of sophisticated binding assays which can quantitatively assess the binding

affinity of aflibercept and ranibizumab to mouse VEGF. However, the main purpose of this

study was to investigate the neutralizing efficacy of ranibizumab and aflibercept on mouse

VEGF in vivo, and we showed that ranibizumab lacks the ability to neutralize mouse VEGF

mainly in vivo. Although this study did not quantitatively assess the binding affinity of afliber-

cept and ranibizumab to mouse VEGF, we believe our data that ranibizumab is not suitable for

in vivo experiments in mice provides ophthalmology researchers with important information.

In conclusion, ranibizumab does not neutralize mouse VEGF, both in vivo and in vitro.

When conducting experiments using anti-VEGF drugs in mice, aflibercept is suitable, but

ranibizumab is not.

Supporting information

S1 Fig. Full-length western blot images of recombinant human VEGF-A165 and mouse

VEGF-A164 detected with aflibercept or ranibizumab as the primary antibody. Immunore-

active bands of mouse VEGF-A164 were observed in the aflibercept-probed blot, but not in the

ranibizumab-probed blot. VEGF, vascular endothelial growth factor.

(TIF)

S2 Fig. Full-length western blot images of recombinant human VEGF-A121 and mouse

VEGF-A120 detected with aflibercept or ranibizumab as the primary antibody. Immunore-

active bands of mouse VEGF-A120 were observed in the aflibercept-probed blot, but not in the

ranibizumab-probed blot. VEGF, vascular endothelial growth factor.

(TIF)

S1 Raw images.

(PDF)
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