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Oral multi-kinase inhibitors have transformed the treatment landscape for various cancer types and 
provided significant improvements in clinical outcomes. These agents are mainly approved at fixed doses, 
but the large inter-individual variability in pharmacokinetics and pharmacodynamics (efficacy and safety) 
has been an unsolved clinical issue. For example, certain patients treated with oral multi-kinase inhibitors at 
standard doses have severe adverse effects and require dose reduction and discontinuation, yet other patients 
have a suboptimal response to these drugs. Consequently, optimizing the dosing of oral multi-kinase inhibi-
tors is important to prevent over-dosing or under-dosing. To date, multiple studies on the exposure-efficacy/
toxicity relationship of molecular targeted therapy have been attempted for the implementation of therapeu-
tic drug monitoring (TDM) strategies. In this milieu, we recently conducted research on several multi-kinase 
inhibitors, such as sunitinib, pazopanib, sorafenib, and lenvatinib, with the aim to optimize their treatment 
efficacy using a pharmacokinetic/pharmacodynamic approach. Among them, sunitinib use is an example of 
successful TDM implementation. Sunitinib demonstrated a significant correlation between drug exposure 
and treatment efficacy or toxicities. As a result, TDM services for sunitinib has been covered by the National 
Health Insurance program in Japan since April 2018. Additionally, other multi-kinase targeted anticancer 
drugs have promising data regarding the exposure–efficacy/toxicity relationship, suggesting the possibility of 
personalization of drug dosage. In this review, we provide a comprehensive summary of the clinical evidence 
for dose individualization of multi-kinase inhibitors and discuss the utility of TDM of multi-kinase inhibi-
tors, especially sunitinib, pazopanib, sorafenib, and lenvatinib.
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1. INTRODUCTION

Oral multi-kinase anticancer agents have been approved for 
the treatment of diverse types of cancer. These agents have 
led to improvements in survival, but it is difficult to manage 
unpredictable therapeutic failure and severe toxicities. One 
of the reasons for suboptimal therapeutic response and unan-
ticipated toxicity of these drugs is due to failure to select the 
optimal drug dose, even if the correct drug has been chosen.1) 
Many oral multi-kinase inhibitors are approved at fixed doses 
regardless of body surface area, body weight, age, or sex. For 
instance, fixed doses of these drugs could lead to a higher 
exposure in patients with low body weight and a lower expo-
sure in patients with high body weight. Additionally, organ 
function, genetic factors affecting activity of metabolizing 
enzymes and drug transporters, adherence, drug–drug inter-
actions, and drug-food interactions could increase the phar-
macokinetic (PK) variation of oral multi-kinase inhibitors.2) 
Indeed, in clinical settings, many oral multi-kinase inhibitors 
show large inter-patient PK variations at the same dosage of 
drugs.3–6) Thus, the large inter-individual variability in PK 
and pharmacodynamics (PD) impacting efficacy and safety 
has been a clinical problem during oral molecular targeted 
therapy. To overcome these issues, the optimal multi-kinase 

inhibitor concentration has been determined using a PK/PD 
approach for a practical therapeutic drug monitoring (TDM) 
procedure. So far, evidence has accumulated that for some 
drugs, drug exposure is associated with efficacy or toxic-
ity.7–9) TDM of oral multi-kinase targeted anticancer agents 
could be useful in cases of decreased therapeutic efficacy, 
unexpected severe side effects, unpredictable suspected poor 
adherence, or drug–drug or drug–food interactions.2) Recently, 
to clarify the appropriate blood concentration, we attempted to 
optimize the treatment efficacy of several multi-kinase inhibi-
tors, including sunitinib, pazopanib, sorafenib, and lenvatinib. 
Among them, sunitinib use is an example of successful TDM 
implementation. Sufficient data have been published confirm-
ing the exposure–efficacy/toxicity relationship of sunitinib, 
demonstrating that the optimal trough concentration of total 
sunitinib (sunitinib plus its major active metabolite, SU12662) 
is 50–100 ng/mL, especially in renal cell carcinoma (RCC) 
treatment.10) Based on this evidence, TDM of sunitinib has 
been clinically applied to patients with RCC in Japan since 
April 2018. For other multi-kinase targeted anticancer drugs, 
exposure-efficacy/toxicity analyses have been reported to de-
termine the optimal concentrations. This review summarizes 
the concept of PK/PD analysis, exposure-toxicity relation-
ships, and the possibility of PK-guided dose individualization 
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of oral multi-kinase inhibitors, primarily focusing on suni-
tinib, pazopanib, sorafenib, and lenvatinib.

2. STRATEGIES FOR IDENTIFYING OPTIMAL 
CONCENTRATIONS OF ORAL MULTI-KINASE IN-
HIBITORS

2.1. Blood Sampling  In the field of oncology, TDM has 
not been established for a variety of reasons. One factor that 
makes it difficult to apply TDM is the need of a robust sam-
pling strategy.3) Most of the traditional cytotoxic agents have 
a very short half-life and are administered by intermittent 
intravenous injections. Therefore, systemic exposure is best 
defined by the area under the curve (AUC), and in such cases, 
the collection of multiple timed blood samples is necessary. 
These requirements are inconvenient and impractical for long-
term patient management.

In contrast to cytotoxic agents, most oral multi-kinase in-
hibitors exhibit a long half-life and are orally administered 
daily as a monotherapy. Therefore, steady-state trough concen-
tration has the potential to represent systemic exposure. These 
features resemble those of classical TDM drugs such as im-
munosuppressants, and the steady-state trough measurements 
of oral multi-kinase targeted agents might have practical ap-
plications in the clinical care of cancer patients. Consequently, 
trough level monitoring of multi-kinase inhibitors could be 
useful for applying TDM in routine practical work.

The timing of blood collection for trough concentration 
is also important in determining the study design.1) Cancer 
treatment, including molecularly targeted anticancer drugs, 
is long-term. The time to show therapeutic effects and side 
effects vary depending on the cancer type and the charac-
teristics of the therapeutic drug. In this context, it would be 
difficult to predict all treatment effects and side effects by 
measuring trough concentrations at only one point. Therefore, 
serial trough concentration measurement over time will lead 
to a more accurate analysis of the relationship between blood 
concentrations and therapeutic effects and side effects of oral 
multi-kinase inhibitors.

2.2. Markers of Efficacy in Analyzing PK/PD Relation-
ship  In oncology, the efficacy endpoint in the short-term 
is tumor shrinkage. In solid tumors, tumor shrinkage is as-
sessed using the Response Evaluation Criteria in Solid Tumors 
(RECIST version 1.1).11) Response criteria are as follows: 1) 
complete response (CR) (disappearance of all target lesions); 
2) partial response (PR) (≥ 30% decrease in the sum of diam-
eters of target lesions); 3) stable disease (SD) (neither sufficient 
shrinkage to qualify for PR nor sufficient increase to qualify 
for progressive disease (PD)); and 4) PD (at least 20% increase 
in the sum of diameters of target lesions). Using RECIST 1.1 
criteria, the effective concentration range can be statistically 
determined by comparing the blood drug concentrations of 
patients who responded to treatment (responders) with those 
of the patients who did not respond to treatment (non-respond-
ers). In general, responders are defined as patients achieving 
objective response (CR or PR at best response) or disease con-
trol status (CR, PR, or SD at best response). Non-responders 
are defined as patients with PD at the best response.

The long-term efficacy endpoint is the treatment period 
(time treatment to failure; TTF), progression-free survival 
(PFS), and overall survival (OS). TTF is defined as the period 

from the first day of treatment until cessation of treatment 
due to any cause. PFS is defined as the period from the date 
of treatment initiation to the date of objective tumor progres-
sion or death. OS is defined as the period from the date of 
treatment initiation until the date of death. For some multi-
kinase inhibitors, the correlation of tumor response (objective 
response or disease control status) with PFS or OS has been 
demonstrated.12–15) In that case, tumor response could be a 
surrogate marker for time-to-event variables (e.g., TTF, PFS, 
and OS).

2.3. Markers of Toxicity in Analyzing PK/PD Re-
lationships  Severe toxicities are crucial issues in multi-
kinase targeted anticancer drug treatment, including grade 
≥3 toxicities according to the Common Toxicity Criteria for 
Adverse Effects (CTC AE), toxicities requiring dose reduction, 
interruption or discontinuation, and intolerable toxicities for 
each patient. The toxic threshold could be determined using 
a comparative analysis of blood drug concentrations between 
patients with severe toxicity and those without severe toxicity.

3. SUNITINIB

3.1. Dosage and Administration  Sunitinib is an oral 
multi-kinase inhibitor for vascular endothelial growth factor 
receptor (VEGFR)-2 and platelet-derived growth factor recep-
tor (PDGFR)-β. Sunitinib is approved for advanced RCC and 
gastrointestinal stromal tumor (GIST) at a once-daily oral 
dose of 50 mg on a 4/2 schedule (4 weeks on followed by 2 
weeks off).16,17) Dose reductions of either 37.5 or 25 mg per 
day are permitted based on individual tolerability, according 
to the manufacturer’s recommendations.

With the advent of sunitinib, the therapeutic outcomes of 
RCC and GIST have significantly improved; however, the dif-
ficulty in adjusting the dosage and administration schedule 
due to serious adverse events has been a major concern. In a 
phase III trial for RCC, a total of 38% patients experienced 
dose reduction due to adverse events, and 32% had a drug 
interruption.16) Therefore, 50 mg daily of sunitinib is an over-
dose for some patients. Unfortunately, in this trial, 21% of the 
patients had PD or their clinical response could not be evalu-
ated.16) In these situations, a biomarker for dose adjustment is 
required.

3.2. Pharmacokinetic Characteristics  Sunitinib is ex-
tensively metabolized in the liver by CYP3A4, and up to 16% 
of the drug is excreted in urine.18,19) The active metabolite 
SU12662 shows similar pharmacological effects and is metab-
olized to inactive compounds by CYP3A4.17) In vitro, sunitinib 
is highly bound to human plasma proteins (95%). The time 
to maximum concentration (tmax) is 6–12 h.18,20) The half-life 
of sunitinib is 40–60 h. The PK of sunitinib and SU12662 in 
patients on hemodialysis (HD) is not altered compared with 
those in patients with normal renal function. This finding sug-
gests that sunitinib could be safety used in patients on HD 
without dose adjustment.21,22) Drug–drug interactions with a 
CYP3A4 inducer or inhibitor cause notable changes in the 
AUC of sunitinib.17) Since the solubility of sunitinib does not 
change below pH 6.8, no effect on sunitinib would be expect-
ed during treatment with histamine H2-receptor antagonists 
or proton pump inhibitors (PPIs).23) Additionally, food had no 
clinically relevant effect on the PK properties of sunitinib and 
SU12662.24) However, it should be noted that the AUC of suni-
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tinib increased by 11% in combination with grapefruit juice, a 
known inhibitor of intestinal CYP3A4.25)

3.3. Exposure-Efficacy/Toxicity Relationship  The co-
efficient of variation (CV) of exposure in patients receiving 
sunitinib at the standard dose of 50 mg/d was reported to be 
28–72%, with a large inter-individual variability.26) Houk 
et al.27) reported that high sunitinib exposure correlates with 
cancer shrinkage, but also with increased toxicity, indicating 
that the efficacy and toxicity of sunitinib are concentration-
dependent. In animal studies, it was found that the phos-
phorylation of VEGFR-2 and PDGFR-β was inhibited at a 
total blood sunitinib concentration (sum of sunitinib and 
SU12662) of 50–100 ng/mL.28) In addition, a phase I study 
reported that dose-limiting toxicity was frequently observed 
in patients (three patients) with total sunitinib concentrations 
≥100 ng/mL.20) Based on these findings, we retrospectively 
assessed the relationship between the blood concentration 
of sunitinib and the frequency and severity of side effects, 
TTF, and PFS in patients with RCC in order to determine 
the optimal concentration of sunitinib.29) Patients with RCC 
with a total sunitinib trough concentration of ≥100 ng/mL 
(n = 13) in cycle 1 at steady state (after day 7 of treatment) 
had a higher frequency of adverse events of any cause of 
grade ≥3 than those with <100 ng/mL (n = 8) (75 vs. 23%). 
Among the patients with ≥100 ng total sunitinib, one patient 
discontinued treatment because of intestinal perforation. This 
finding suggests that caution is needed when the total suni-
tinib concentration is ≥100 ng/mL. Interestingly, this patient 
with intestinal perforation had variant forms of the intestinal 
efflux transporters ABCG2 and ABCB1, possibly resulting in 
elevated sunitinib concentration in intestinal cells. Regarding 
the exposure-efficacy relationship, the percentage of disease 
control (CR, PR, or SD at best response) was similar (88 vs. 
85%) between patients with ≥100 ng/mL and patients with 
<100 ng/mL. Furthermore, we found that <100 ng/mL total 
sunitinib was significantly correlated with longer TTF and 
PFS. These results suggest that total sunitinib concentrations 
≥100 ng/mL may shorten the duration of successful treatment 
due to the development of severe toxicity. In another study, 
Mizuno et al.30) reported that serious adverse effects occurred 
at total sunitinib concentrations of ≥90 ng/mL in patients 
with RCC. Additionally, Nagata et al.31) reported that, by PK 
model-based analysis, maintaining a total sunitinib trough 
concentration <100 ng/mL may avoid the onset of grade ≥3 

thrombocytopenia. Furthermore, a prospective study showed 
that PK-guided dose optimization for targeting ≥50 ng/mL of 
total sunitinib is successful in daily practice for patients with 
solid tumors.32)

A recent meta-analysis demonstrated that an alternative 
dosing schedule, 2 weeks on/1 week off (2/1) schedule, is 
more effective, as indicated by an improved PFS, than the 4/2 
schedule. Moreover, the 2/1 schedule was associated with less 
severe sunitinib-related toxicity.33–37) In a recent study, Ito 
et al.38) reported that the optimal total trough concentration 
with a 2/1 schedule could be less than 108 ng/mL to reduce 
severe toxicity induced by sunitinib.

3.4. Target Concentration  We have summarized the 
guidelines for TDM for sunitinib (Table 1). The serum or 
plasma trough concentration of sunitinib was used to assess 
sunitinib PK. A semi-physiological PK model for sunitinib 
and SU12662 reported that the time to reach >90% of the the-
oretical steady-state concentration was approximately 6 d for 
sunitinib and 8 d for SU12662.39) Therefore, we propose that 
sunitinib and SU12662 trough serum concentrations should be 
monitored from day 8, targeting 50–100 ng/mL of total suni-
tinib for RCC. The target range of total trough sunitinib for 
GIST is not clear, and further PK studies are required.

4. PAZOPANIB

4.1. Dosage and Administration  Pazopanib is a multi-
kinase oral molecularly targeted anticancer drug that targets 
VEGFR, PDGFR, and other tyrosine kinases, and is adminis-
tered at a standard dose of 800 mg/d once daily. Pazopanib has 
been approved as a first-line therapy for advanced RCC and as 
a second-line treatment for non-adipocytic soft tissue sarcoma 
(STS).40,41)

Pazopanib has been found to cause serious side effects such 
as hepatotoxicity, hypertension, thrombocytopenia, anemia, 
fatigue, and diarrhea in certain patients. In fact, in a phase III 
study that patients started with 800 mg of pazopanib, 16–24% 
of patients were reported to have discontinued treatment due 
to serious side effects of pazopanib.40) Thus, in clinical prac-
tice, the side effects of pazopanib are difficult to predict and 
often decrease the QOL of patients, which force to reduce 
or discontinue pazopanib. Therefore, it is necessary for a 
therapeutic strategy to determine the optimal dosage index of 
pazopanib.

Table 1. Current Doses, and Target Concentration of Sunitinib, Pazopanib, Sorafenib, and Lenvatinib

Drug Approved starting dose (Indications)
PK-related PD markers Proposed target trough  

concentrationPK-related efficacy PK-related toxicity

Sunitinib 50 mg (RCC, GIST) Tumor shrinkage18)  
TTF,29) PFS29)

Neutropenia,18)　 
Thrombocytopenia,29)　 
Anorexia,29) Fatigue29)

50–100 ng/mL  
(RCC)10,29–32,38)

Pazopanib 800 mg (RCC, STS) Tumor shrinkage,51) PFS51,52,56) Anorexia,54) Fatigue,54)  
Hypertension53,54)

20–50 µg/mL  
(RCC, STS)51,52,54,56)

Sorafenib 800 mg (HCC, DTC) Tumor shrinkage72)  
PFS75)

Hand-foot syndrome,72,74)  
Fatigue,72) Diarrhea,72)  
Rash72)

1.40–3.45 µg/mL  
(HCC)72)

Lenvatinib 24 mg (DTC)　12 mg for body weight ≥60 kg 
or 8 mg for body weight <60 kg (HCC)

Tumor shrinkage86,87) Adverse events of any  
cause of grade ≥3*,86)

42–88 ng/mL (DTC)88)  
40–70 ng/mL (HCC)82,86,87)

PK, pharmacokinetics; PD, pharmacodynamics; RCC, renal cell carcinoma; GIST, gastrointestinal stromal tumor; TTF, treatment to failure; PFS, progression-free survival; 
STS, soft tissue sarcoma; HCC, hepatocellular carcinoma; DTC, differentiated thyroid cancer. * grade ≥3 anorexia, grade ≥3 fatigue, grade ≥3 hypertension, grade ≥3 edema, 
grade ≥3 hand-foot syndrome, grade ≥3 stomatitis, and grade ≥3 proteinuria.
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4.2. Pharmacokinetic Characteristics  Pazopanib is 
mainly metabolized in the liver by CYP3A4 and excreted in 
feces, with a renal elimination of <4%. Due to this minimal 
renal excretion, pazopanib can be used in patients with mild 
or moderate kidney impairment, or during hemodialysis with-
out dose adjustments.42,43) In contrast, pazopanib clearance 
is decreased by 50% in patients with pre-existing moderate 
hepatic impairment (total bilirubin between 1.5 and 3 times 
the upper limit of normal). A daily dose of 200 mg is rec-
ommended for patients with moderate hepatic impairment. 
Pazopanib should be avoided in patients with severe hepatic 
impairment (total bilirubin >3 ×  the upper limit of normal 
with any elevation of alanine aminotransferase levels). The 
plasma half-life of pazopanib is 31–35 h.44,45)In vitro, pazo-
panib is highly bound to human plasma proteins (> 99%), 
mainly to albumin.46) Pazopanib should be taken at least 1 h 
before or 2 h after a meal, because administration of a low- or 
high-fat meal is associated with a >2-fold increase in the peak 
serum concentration (Cmax) and AUC of pazopanib.47) Lubber-
man et al.48) indicated that a 600 mg dose of pazopanib taken 
with a continental breakfast is bioequivalent to an 800 mg 
dose of pazopanib taken in a fasted state. Concomitant use of 
pazopanib with a PPI, inhibiting gastric secretion for >24 h, 
resulted in a marked decrease in the absorption and bioavail-
ability of pazopanib.49,50)

4.3. Exposure-Efficacy/Toxicity Relationship  Previous 
studies have shown a high degree of interpatient variability in 
pazopanib exposure at the approved initial dose of 800 mg/d, 
with a CV ranging between 36 and 72%.26) Several retrospec-
tive studies have demonstrated a clear correlation between 
pazopanib exposure and treatment efficacy. In advanced RCC 
patients, a previous PK study reported that pazopanib concen-
trations of ≥20.5 µg/mL at the fourth week of treatment were 
highly effective.51) This efficacy threshold was further con-
firmed in patients with metastatic RCC in a real-life patient 
cohort.52) Another study in patients with RCC for adjuvant set-
ting indicated that patients achieving ≥20.5 µg/mL pazopanib 
had significantly longer disease-free survival.53) Consistent 
with the above report in RCC, our study analyzing pazopanib 
PK showed 88.9% of patients with ≥20.5 µg/mL pazopanib 
had CR, PR or SD at best response, whereas patients with 
<20.5 µg/mL had no tumor shrinkage for advanced RCC.54) 
Furthermore, Verheijen et al.55) reported that a PK-guided 
strategy (target trough concentration: ≥ 20.5 µg/mL) for ad-
vanced solid tumors resulted in improved treatment efficacy. 
Recently, Fukudo et al.56) conducted a prospective cohort 
study to evaluate the benefits of TDM for pazopanib therapy 
in patients with RCC and STS. In their study, PK-guided 
dosing targeting a trough level ≥20.5 µg/mL significantly 
increased median time-to-treatment discontinuation with re-
duced toxicity and improved overall survival compared to the 
conventional dosing group. These findings suggest that the 
PK-guided dose optimization approach of pazopanib could 
help some patients manage toxicity and improve treatment 
outcomes.

Regarding pazopanib toxicity, we found that patients who 
developed grade ≥2 anorexia, fatigue, and hypertension had 
significantly higher blood levels of pazopanib compared with 
patients who had grade <2 of these side effects.54) Further-
more, we reported that pazopanib showed a clinically mean-
ingful association between grade ≥3 adverse events and expo-

sure. To calculate the statistically significant toxicity threshold, 
we performed receiver operating characteristic (ROC) analysis 
and found that the significant cut-off value for the occurrence 
of grade ≥3 adverse effects was 50.3 µg/mL (AUC, 0.85; 95% 
confidence interval (CI), 0.70–0.99; p < 0.05). In the group 
with pazopanib concentration of ≥50.3 µg/mL (13 patients), 
8 patients (61.5%) had grade ≥3 adverse reactions, including 
anorexia, hypertension, thrombocytopenia, anemia, fatigue, 
and elevated alanine aminotransferase, and a dose reduction 
was required in 8 patients (61.5%) due to side effects. On the 
other hand, in the group with pazopanib concentration less 
than 50.3 µg/mL (14 patients), 1 patient (7.1%) had grade ≥3 
adverse reactions, including diarrhea, and a dose reduction 
was required in 5 patients (35.7%) due to side effects. Verhei-
jen et al.55) have reported that the mean trough concentration 
of pazopanib was 51.3 µg/mL in patients whose doses were 
forced to be reduced due to grade ≥3 side effects in a PK-
guided study based on pazopanib blood concentration. These 
observations indicate that a pazopanib trough concentration of 
>50 µg/mL may be a limiting factor in treatment discontinu-
ation.

Furthermore, we examined the overall response rate (ORR) 
following pazopanib exposure.54) ORR was similar between 
patients with pazopanib concentrations of 20.5–50.3 µg/mL 
and patients with concentrations of ≥50.3 µg/mL (45.5 vs. 
46.2%). Therefore, considering the risk of serious side effects 
and difficulty in continuing treatment with pazopanib con-
centrations of ≥50 µg/mL, we suggest that the optimal con-
centration of pazopanib in RCC patients is in the range of 
20–50 µg/mL to avoid serious side effects and to ensure ef-
ficacy.

4.4. Target Concentration  We have summarized the 
TDM guidelines for pazopanib (Table 1). Pazopanib PK was 
assessed using the serum or plasma trough concentration of 
pazopanib. We propose that the pazopanib trough concentra-
tion should be monitored from day 8 at a steady state, target-
ing 20–50 µg/mL for RCC and STS.

5. SORAFENIB

5.1. Dosage and Administration  Sorafenib is an oral 
multi-kinase inhibitor that blocks VEGFR, PDGFR, and 
stem cell factor receptors. Sorafenib has been approved for 
the treatment of advanced and/or metastatic hepatocellular 
carcinoma (HCC), RCC, and thyroid cancer.57–59) The recom-
mended dosage was 400 mg twice daily. Dose adjustments to 
400 mg once daily can be used to manage potential adverse 
events.

Sorafenib frequently induces early and severe toxicities 
such as hepatotoxicity, thrombocytopenia, anorexia, fatigue, 
hand-foot syndrome (HFS), and diarrhea.60) Because these 
toxicities are difficult to anticipate and reduce the QOL of 
patients, dose reduction or discontinuation is required in 
clinical settings. In fact, treatment was interrupted in 44% of 
sorafenib-treated patients in pivotal phase III trials of HCC 
because of severe toxicities, including gastrointestinal adverse 
events, fatigue, and hepatotoxicity.58) Consequently, physicians 
must closely monitor all patients undergoing sorafenib therapy. 
However, some patients did not respond to sorafenib. In Asia-
Pacific trials, 30.7% of patients had PD as the best overall re-
sponse.61) However, the clinical parameters that determine the 
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therapeutic response/safety to sorafenib remain unknown.62)

5.2. Pharmacokinetic Characteristics  Sorafenib is me-
tabolized mainly in the liver by both CYP3A4 and glucuroni-
dation, with urinary excretion representing a minor portion 
(19%) of the elimination.63) Sorafenib is almost exclusively 
bound to plasma proteins (99.5%).64,65) The plasma elimina-
tion half-life of sorafenib is 25–48 h. There was no relevant 
effect of esomeprazole, a PPI, administration on the PK of 
sorafenib.66) This result indicates that sorafenib can be used 
concomitantly with agents reducing production of gastric acid, 
such as histamine H2-receptor antagonists and PPIs. With a 
high-fat meal, sorafenib bioavailability was reduced by 29% 
compared with its fasting bioavailability,67) suggesting that 
sorafenib is best administered without food or with a light 
(low-fat) meal.

5.3. Exposure-Efficacy/Toxicity Relationship  Previous 
reports have shown large inter-individual variability,61,68) 
which could contribute to the under- or over treatment of 
sorafenib therapy.

Several studies indicated that the incidence of HFS is 
concentration-dependent during sorafenib therapy.69,70) An-
other report showed that high concentrations of sorafenib are 
associated with early dermatological adverse events.71) Our 
exposure–toxicity analysis showed an association between 
sorafenib concentration and grade ≥2 occurrences of fatigue, 
diarrhea, HFS, and rash.72) Additionally, our findings indi-
cated that the trough sorafenib concentration is significantly 
higher in patients with grade ≥3 toxicity than in those with-
out grade ≥3 toxicity. This result is consistent with previous 
PK studies in patients with HCC, in which the increased 
sorafenib exposure is significantly associated with grade 3–4 
adverse events.70,73) To determine the threshold concentra-
tion, we conducted exposure-toxicity analysis for HCC, and 
our results indicated that a sorafenib trough concentration of 
≥3.45 µg/mL is a threshold for grade ≥3 toxicity of sorafenib 
in patients with HCC.72) In the multivariate logistic regression 
analysis, sorafenib concentration ≥3.45 µg/mL was the only 
parameter independently associated with an increased risk of 
any grade ≥3 toxicities induced by sorafenib (OR, 10.9; 95% 
CI, 1.01–117; p < 0.05). Dose reduction and treatment discon-
tinuation tendency was greater in patients with ≥3.45 µg/mL 
sorafenib than in patients with <3.45 µg/mL sorafenib be-
cause of toxicities. The most common serious adverse event 
in patients with ≥3.45 µg/mL sorafenib was liver dysfunction 
(grade 3 aspartate aminotransferase elevation, 44.5%; grade 
3 alanine aminotransferase elevation, 54.5%). Additionally, 
Karovic et al.74) reported an increase in the incidence of HFS 
and diarrhea when the minimum blood concentration ex-
ceeded 5 µg/mL in patients with solid tumors, suggesting that 
a high sorafenib trough concentration may be an influencing 
factor in adverse events.

The exposure-efficacy analysis showed that the mean 
trough sorafenib concentration was significantly higher in 
responders (CR, PR, or SD at 3 months) than in non-respond-
ers.72) Based on the ROC curve, the efficacy threshold value of 
the trough sorafenib concentration predicting good response 
was 1.40 µg/mL (AUC, 0.97; 95% CI, 0.97–1.00; p < 0.05). 
In multivariate analysis, sorafenib concentration and Child-
Pugh B classification were important independent factors as-
sociated with OS. Regarding sorafenib exposure, there was a 
significant improvement of OS in the 1.40 µg/mL ≤ sorafenib 

<3.45 µg/mL group compared with the <1.40 µg/mL sorafenib 
group (HR, 8.70; 95% CI, 2.07–36.5; p < 0.01). There was a 
trend toward an improved OS in the 1.40–3.45 µg/mL group 
compared with the ≥3.45 µg/mL sorafenib group (HR, 3.46; 
95% CI, 0.94–12.7; p = 0.06). In another study, Fukudo et al.75) 
showed that patients with HCC on a maximal concentration 
of sorafenib ≥4.78 µg/mL (cut-off value for predicting grade 
2≥ hypertension) had prolonged OS than HCC patients with 
<4.78 µg/mL (median 12.0 vs. 6.5 months; p = 0.0824). Re-
cently, PK-guided dosing of oral sorafenib in pediatric patients 
with HCC has been reported to be useful for reducing HFS 
and maintaining targeted AUC0-12 (20–55 h µg/mL) using 
simulated PK data.76)

5.4. Target Concentration  We have summarized the 
guidance of TDM for sorafenib (Table 1). Sorafenib PK was 
assessed using the serum or plasma trough concentration of 
sorafenib. We propose that the sorafenib trough concentration 
should be monitored from day 8 at a steady state. Our results 
showed that 1.40–3.45 µg/mL sorafenib trough concentra-
tion may be the optimal range for HCC. The target range of 
sorafenib for thyroid cancer or RCC is not clear.

6. LENVATINIB

6.1. Dosage and Administration  Lenvatinib is an oral 
multi-kinase inhibitor targeting VEGFR 1–3, fibroblast growth 
factor receptors 1–4, PDGFR-α, rearranged during transfec-
tion, and stem cell factor receptor. Lenvatinib is approved for 
the treatment of radioiodine-refractory differentiated thyroid 
cancer and advanced and/or metastatic HCC.77,78) The initial 
approval dose for thyroid cancer was 24 mg/d. The currently 
approved starting dosage for HCC is 12 mg/d for body weight 
≥60 kg or 8 mg/d for body weight <60 kg. Based on the results 
of the Phase I study in solid tumors,79,80) a dose of 24 mg once 
daily was recommended for thyroid cancer. In contrast, for 
HCC, dose-finding studies demonstrated that the initial dose 
was set and was subsequently approved at a lower level, since 
the impaired hepatic function in patients with HCC may affect 
lenvatinib exposure.78,81)

It is difficult for medical oncologists to determine the op-
timal lenvatinib dosage for each patient. For thyroid cancer, 
the initial dose of lenvatinib is 24 mg daily; however, a mean 
lenvatinib dose after adjustment due to severe toxicity was 
17.2 mg daily in a phase III study.77) For HCC, a phase II PK 
study and simulated population PK study showed that 12 mg 
was an overdose for patients weighing <60 kg.82,83) Therefore, 
the dose for HCC is set and approved based on body weight 
(12 mg/d for body weight ≥60 kg or 8 mg/d for body weight 
<60 kg). Despite this dose setting for HCC, lenvatinib fre-
quently induces early and severe toxicities such as fatigue, 
hypertension, proteinuria, and anorexia, resulting in empiric 
dose reduction or discontinuation. The incidences of dose 
reduction and dose interruption due to severe toxicities were 
37% and 40%, respectively, in lenvatinib-treated patients in a 
pivotal phase III trial for HCC.78) Therefore, predictive mark-
ers for toxicity other than body weight are required for HCC. 
Additionally, a predictive marker for dose adjustment is re-
quired for thyroid cancer and HCC.

6.2. Pharmacokinetic Characteristics  Lenvatinib is 
primarily metabolized by CYP3A4 and excreted in the feces. 
Renal excretion of lenvatinib is very low (< 2.5%). Food 
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intake did not affect exposure to lenvatinib.79) Lenvatinib is 
rapidly absorbed with tmax at 1–4 h after administration.84) The 
terminal half-life of lenvatinib is 28 h.85) The apparent oral 
clearance (CL/F) of lenvatinib is 4.2–7.1 L/h.85) Protein bind-
ing ranged from 96.6% to 98.2%.80) Renal function had no sig-
nificant effect on lenvatinib CL/F.85) pH-elevating agents had 
no influence on the absorption process of lenvatinib.85)

6.3. Exposure-Efficacy/Toxicity Relationship  Several 
studies have evaluated a relationship between lenvatinib 
exposure and dose-limiting toxicities. A previous report 
showed that the median trough lenvatinib concentration was 
62.4 ng/mL on day 15 of cycle 1 in patients administered len-
vatinib 12 mg daily for HCC and required dose modifications 
within 30 d.82) Our exposure-toxicity analysis showed that the 
mean trough lenvatinib concentration was significantly higher 
in the group with grade ≥3 toxicity (n = 15) than in the group 
with grade ≤2 toxicity (n = 13).86) Based on the ROC curve, 
the threshold value of the trough lenvatinib concentration for 
predicting grade ≥3 toxicities was 71.4 ng/mL (AUC, 0.86; 
95% CI, 0.71–1.00; p < 0.05). Our result suggests that a lenva-
tinib trough concentration of ≥71.4 ng/mL is as a threshold for 
grade ≥3 toxicity of lenvatinib in patients with HCC. From 
these findings, lenvatinib over-exposure is highly linked to 
dose-limiting toxicities.

Two published studies have shown that efficacy is related 
to lenvatinib exposure in HCC. Hata et al.87) reported that 
maintaining a median trough concentration above 42.68 ng/mL 
of lenvatinib was crucial for achieving the objective response 
(CR or PR) rate in HCC patients. Additionally, we showed 
that the threshold value of the trough lenvatinib concentra-
tion associated with disease control status (CR, PR, or SD at 
best response) for HCC was 36.8 ng/mL.86) Furthermore, our 
data showed that patients with HCC exhibiting serum len-
vatinib concentrations of 36.8–71.4 ng/mL tended to exhibit 
prolonged TTF and PFS, and lenvatinib was well tolerated in 
these patients. Based on the evidence for an exposure-efficacy/
safety relationship, optimal lenvatinib range for HCC may 
be 40–70 ng/mL. In a recent PK/PD analysis in patients with 
advanced thyroid cancer, the target trough concentration for 
lenvatinib as the threshold for predicting optimal response 
was found to be in the range of 42–88 ng/mL.88)

6.4. Target Concentration  We have summarized the 
guidance of TDM for lenvatinib (Table 1). Lenvatinib PK was 
assessed using the serum or plasma trough concentration of 

lenvatinib. We propose that the lenvatinib trough concentra-
tion should be monitored from day 8 at a steady state, tar-
geting 40–70 ng/mL for HCC, and 42–88 ng/mL for thyroid 
cancer. However, PK-guided study of lenvatinib has not been 
reported yet, and therefore, the cut-off values should be vali-
dated in further large prospective studies.

7. PERSPECTIVES

TDM is a useful tool for dose adjustment, but there is little 
information on the best indicators for individualization of the 
starting dose. Differences in drug exposure among patients 
have been shown to be associated with genetic polymorphisms 
in factors related to pharmacokinetics (for example, drug-
metabolizing enzymes and drug transporters). Therefore, the 
detection of pharmacogenomic (PGx) factors determining the 
PK of oral multi-kinase inhibitors could predict high blood 
levels prior to the start of treatment. Among these factors, 
genetic polymorphisms of the breast cancer resistance protein 
(BCRP/ABCG2), the efflux transporter, have been reported to 
have a major impact on exposure to certain oral multi-kinase 
inhibitors.2,30,89–91) We hope that further PK/PGx studies will 
contribute to the precise individualized dosing of oral multi-
targeted therapy.

Recently, immuno-oncology has provided a breakthrough 
in cancer chemotherapy. In this approach, regimens combin-
ing immune checkpoint inhibitors with a multi-targeted anti-
cancer agent have shown clinical benefits for advanced carci-
noma.92–94) Additionally, immune checkpoint inhibitors-based 
therapies have been approved as first-line therapy for various 
types of cancer, and oral multi-kinase inhibitors are now 
used as second-line or later therapy after immune checkpoint 
inhibitors. Immune checkpoint inhibitors have been reported 
to have long-lasting effects,95) and may additively or syner-
gistically enhance the clinical efficacy of molecular-targeted 
therapy. At the same time, new safety concerns have been 
raised by several studies on molecular-targeted therapy follow-
ing immune checkpoint inhibitor use.96–100) However, to date, 
there have been no reports on the PK interactions between 
immune checkpoint inhibitors and multi-kinase inhibitors. 
Therapeutic monoclonal antibodies are not thought to inter-
act directly with CYP enzymes.101,102) In contrast, cytokines 
produced by activated T cells can affect the regulation of 
several drug transporters and CYP enzyme levels; therefore, 

Fig. 1. Dose Optimization of Oral Multi-Kinase Inhibitors Using Therapeutic Drug Monitoring
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immunomodulatory antibodies may indirectly affect exposure 
to small molecule drugs. In the future, this hypothesis should 
be confirmed in further PK clinical trials.

8. CONCLUSION

In conclusion, dose individualization can be used to achieve 
optimal drug exposure and best clinical outcomes. The identifi-
cation of optimal blood ranges would help individualize treat-
ment using oral multi-kinase inhibitors, suggesting that TDM 
could be useful for dose adjustment of these drugs (Fig. 1).
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