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Abstract
Purpose Treatments for metastatic human epidermal growth factor receptor 2 (HER2)-positive tumors are improving but 
remain inadequate. We investigated activating antitumor immune response by combining radiation therapy with immune 
checkpoint inhibitors using mouse tumors overexpressing HER2, a pivotal driver oncogenic antigen, to develop new immu-
notherapies for metastatic HER2-positive tumors.
Materials and methods NT2.5 cells were inoculated into the two mammary fat pads of FVB/N mice, which were divided 
into four groups: no treatment (Non), anti-PD-1 and anti-CTLA4 antibodies (P1C4), irradiation of the large tumor (Rad), 
and combination (R + P1C4) groups. Tumor growth, immunostaining of tumor-infiltrating lymphocytes, and the proportion 
of HER2-tumor antigen-specific CD8-positive T cells in the spleen and tumor-infiltrating lymphocytes were analyzed.
Results In the Rad group, unirradiated and irradiated tumors shrank after treatment. Besides the directly irradiated tumors, 
the unirradiated tumors in the R + P1C4 group shrank the most. In the unirradiated tumors, CD8-positive T cells and FOXP3-
positive T cells accumulated significantly more in the R + P1C4 group than in the P1C4 and the Rad groups (all p < 0.001). 
CD4-positive helper T cells accumulated significantly more in the R + P1C4 group than in the Rad group (p < 0.05), but this 
was not significantly different from the P1C4 group. HER2-specific CD8-positive T cells in the spleen and tumor-infiltrating 
lymphocytes were significantly increased in the R + P1C4 group compared to the P1C4 and Rad groups (all p < 0.0001).
Conclusion Irradiation of HER2-positive tumors induced an antitumor immune effect against the unirradiated tumor, which 
was enhanced by the combined use of immune checkpoint inhibitors and was mediated by enhanced recruitment of HER2-
tumor antigen-specific cytotoxic T lymphocytes at the tumor site in an HER2-positive mouse tumor model. Harnessing the 
distant antitumor immune response induced by the combination of radiation therapy and immune checkpoint inhibitors could 
be a promising treatment strategy for metastatic HER2-positive tumors.
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Introduction

Radiation therapy (RT) is a local treatment for malignant 
tumors that was thought to suppress immunity [1]. How-
ever, in 1979, the role of T cells in the effects of RT on 
local tumor control was shown in a murine fibrosarcoma 
model [2], and many studies have reported their immu-
nogenic effect [3–5]. Irradiation can elicit tumor antigen-
specific cellular immunity [3, 4]. Additionally, the RT-
induced immune-mediated antitumor effect causes tumor 
shrinkage outside the irradiated field, termed the abscopal 
effect [5].

The combination of an immune checkpoint inhibi-
tor (ICI) and RT was first used in a mouse breast cancer 
model, resulting in suppressed metastasis [6]. Clinical 
and basic research on the timing of concomitant use with 
immunomodulators is ongoing [7].

Human epidermal growth factor receptor 2 (HER2) is a 
driver gene of cell proliferation [8]. HER2 overexpression 
promotes breast cancer carcinogenesis [8]. Furthermore, 
HER2 expression is a poor prognostic factor for breast 
cancer [9]. As HER2 is important for cancer cell growth, 
it is attracting attention as an immunogenic tumor antigen 
[10].

HER2-positive tumor survival has been improved by 
new anti-HER2 drugs. However, nearly 20% of early stage 
HER2-positive breast cancers recur [11], and recurrence 
or metastasis remains intractable. To overcome this, we 
investigated the local RT-induced distant antitumor effect 
of ICIs in HER2-positive metastatic tumor model mice. 
We also investigated the effects of irradiation and ICIs on 
cellular immunity by examining the expression of HER2-
antigen-specific cytotoxic T lymphocytes (CTLs) in the 
spleen and unirradiated tumors. If the distant antitumor 
effect is effective in treating HER2-positive tumors and 
its immunological mechanism is elucidated, it may lead 
to novel immunotherapies for metastatic HER2-positive 
tumors.

Materials and methods

Mice

FVB mice were purchased from CLEA Japan (Tokyo, 
Japan) and mated. We used 6–10-week-old female mice. 
The animals were housed under pathogen-free conditions 
at Shiga University of Medical Science university. Experi-
ments were performed according to the institutional and 
national guidelines for the care and use of animals and 
institution-approved protocols were followed.

Cell lines

NT2.5, a cell line derived from HER2/neu (rat) transgenic 
mouse mammary tumor, was grown in defined breast 
medium and maintained at 37 °C in 5%  CO2, as previously 
described [12].  T2Dq cells were created by transfecting T2 
cells lacking the MHC class 1 antigen processing-related 
transporter with the  Dq gene encoding the MHC class 1 
molecule of  RNEU420-429, an epitope of the neu antigen 
[12].

Peptides and antibodies

RNEU420-429 (PDSLRDLSVF), the immunodominant pep-
tide of HER2/neu for MHC class I, and  NP118-126 (RPQASG-
VYM), a peptide derived from a nuclear protein as a control, 
were obtained from Hokkaido System Science (Sapporo, 
Japan). An APC-anti-mouse CD8a monoclonal antibody 
(mAb), PE-anti-mouse IFN-γ mAb, and Fixable Viability 
Stain 520 were obtained from BD Biosciences (Franklin 
Lakes, NJ, USA). A therapeutic anti-PD-1 mAb (clone: 
RMP1-14) and anti-CTLA-4 mAb (clone: 9H10) were 
obtained from BioXcell (Lebanon, NH, USA). IgG from rat 
serum, administered as a therapeutic control, was obtained 
from Sigma-Aldrich (St. Louis, MO, USA). The antibodies 
(Abs) used for immunostaining were as follows: anti-CD8 
mAb (ab209775, 1:2000, Abcam, Cambridge, United King-
dom), anti-CD4 mAb (ab183685, 1:1000, Abcam), anti-
FOXP3 Ab (polyclonal, NB100-39002, 1:800, Novus Bio-
logicals, Centennial, CO, USA), and Histofine Simple Stain 
Mouse MAX-PO (Nichirei Biosciences, Tokyo, Japan).

Tumor cell challenge and treatment

FVB mice were injected subcutaneously with 5 ×  106 cells 
in the second mammary fat pad from the bottom bilaterally. 
Tumor diameters were measured orthogonally with a digital 
caliper every 2–4 days, and tumor sizes were calculated as 
length × width  (mm2). When the tumor reached 25–35  mm2 
or more (17–28 days post-inoculation), mice were randomly 
assigned to two or four groups. For the two groups, mice 
were assigned to a no-treatment group (Non, n = 4) and a 
group that received RT for the larger tumor (Rad, n = 4).

The four groups were: the Non group (n = 4), a group 
administered PD-1 and CTLA-4 mAbs (P1C4 group, n = 6), 
Rad group (n = 6), and a combined group administered 
mAbs and RT (R + P1C4 group, n = 6). For ICIs, anti-PD-1 
and anti-CTLA4 mAbs were administered on days 0, 2, 
and 5 after the start of treatment and only the anti-PD-1 
mAb on day 8. Rat IgG was administered as a control in 
the Non and Rad groups. Each antibody was administered 
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intraperitoneally (150 µg). During RT, mice were anaesthe-
tized by an intraperitoneal injection of 5 mg/kg of ketamine 
hydrochloride (Ketalar, Daiichi Sankyo, Tokyo, Japan) and 
1.0 mg/kg of medetomidine hydrochloride (Domitor, Zon-
oac, Fukushima, Japan). The larger of the two tumors was 
irradiated with three fractions of 8 Gy on days 0, 1, and 2 
using the Xstrahl RS320 X-ray irradiator (Camberley, United 
Kingdom) at 150 kVp, 20 mA with a 0.5 mm Al and 0.1 mm 
Cu filter. During irradiation, mice were laid supine in an 
acrylic case, and the whole body was shielded with a 5 mm-
thick lead plate. The tumor on the irradiated side was placed 
outside the shield through a 1 cm hole (Fig. 1).

HER2/neu tumor antigen‑specific CD8‑positive T‑cell 
assay of splenocytes

Spleens of all mice were harvested 14 days after beginning 
treatment. Splenic T cells were purified from splenocytes 
using a nylon wool column after treatment with Red Blood 
Cell Lysis Solution (Miltenyi Biotec, Bergisch Gladbach, 
Germany). Purified T cells were restimulated overnight with 
 T2Dq cells pulsed with  RNEU420-429 or  NP118-126. Intracel-
lular cytokine staining (ICS) to assess IFN-γ production by 
CD8-positive T cells in response to RNEU was performed 
by flow cytometry according to the Cytofix/Cytoperm with 
the Golgistop procedure (BD Biosciences) as described pre-
viously [13].

Tumor‑infiltrating T‑cell assay

Tumors were removed 14 days after beginning treatment. 
Tumors were diced and digested with collagenase IV and 
0.1% hyaluronidase using a bioshaker for 2 h at 37 °C. The 
centrifuged debris was trypsinized, and the cell pellets were 

cultured for 2 h at 37 °C under 5%  CO2 to remove the adher-
ent NT2.5-derived tumor cells. Non-adherent cells were col-
lected and filtered with a cell strainer (Easy strainer 70 μM, 
Greiner Bio-one, Oberosterreich, Austria). Finally, tumor-
infiltrating lymphocytes (TILs) were prepared from the 
flow-through fraction of a nylon wool column. HER2/neu 
tumor antigen-specific CD8-positive T cells were examined 
using the above assay with an Fcγ receptor blocker (Miltenyi 
Biotec) before staining with the CD8a mAb to avoid non-
specific binding.

Flow cytometry

Flow cytometry data were collated using BD FACS Calibur 
(BD Biosciences) and analyzed using FlowJo v10 software 
(BD Biosciences).

Immunohistochemical staining and analysis

Tumors were removed 14 days after beginning treatment and 
were fixed in 4% paraformaldehyde phosphate buffer solu-
tion (Nacalai Tesque, Kyoto, Japan) for 24 h, transferred to 
70% ethanol, and processed into paraffin blocks. The blocks 
were sectioned at 4 μm, followed by deparaffinization and 
antigen retrieval in 10 mM sodium citrate buffer (pH 6) at 
98 °C for 45 min. Immunohistochemistry (IHC) was then 
performed as follows: quenching with 3% hydrogen peroxide 
in methanol for 13 min, blocking with Histofine Blocking 
Reagent A (Nichirei Biosciences) for 45 min, primary anti-
body incubation overnight at 4 °C, blocking with Histofine 
Blocking Reagent B (Nichirei Biosciences) for 20 min, sec-
ondary antibody incubation for a half hour, and 3,3′-diamin-
obenzidine (Nichirei Biosciences) treatment for 5 min. The 
sections were counterstained with hematoxylin.

Fig. 1  The experiment sched-
ule. Tumor cells (5 ×  106) 
overexpressing HER2/neu 
were inoculated bilaterally 
into the mammary fat pads 
of female FVB mice. When 
tumors reached approximately 
30–100  mm2, treatment com-
menced in four groups: no 
treatment (Non), anti-PD-1 
and anti-CTLA-4 antibodies 
(P1C4), irradiation of the large 
tumor (Rad), and combination 
(R + P1C4) groups. Radiation 
therapy and administration of 
immune checkpoint inhibitors 
(ICIs) were performed as shown 
in the figure. ICIs were adminis-
tered at 150 μg each
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IHC was performed on three specimens from each group, 
and the number of immunostained cells was counted. Two 
independent observers each counted positive cells from all 
specimens in five non-overlapping high-power fields (400×). 
The average number of positive cells in each group was cal-
culated. We selected fields of view with many positive cells 
in and around the tumor. For CD4/8-positive cells, those 
with a clearly stained cell membrane were counted, while for 
FOXP3, those with a deeply stained nucleus were counted. 
The number of FOXP3-positive cells was subtracted from 
the number of CD4-positive cells to yield the number of 
CD4-positive helper T cells.

Statistical analysis

All data are presented as the mean ± standard deviation (SD). 
One-way analysis of variance (ANOVA) was performed to 
assess significant differences among three or four groups in 
tumor size, the proportion of tumor antigen-specific CD8-
positive T cells in TILs and splenocytes, and the number of 
immunostained cells. If there was a significant difference, a 
Bonferroni correction was performed as a post hoc test. The 
proportion of tumor antigen-specific CD8-positive T cells in 
splenocytes between the Non and Rad groups was assessed 
by a two-tailed Student’s t test. The reliability between 
examiners in the IHC experiment was examined using intra-
class correlation coefficients (2, 1). All statistical analyses 
were performed with EZR version 1.54 (Saitama Medical 
Center, Jichi Medical University, Saitama, Japan) [14], a 
graphical user interface for R. More precisely, a modified 
version of R commander (version 1.6–3) added statistical 
functions frequently used in biostatistics. Statistical signifi-
cance was set at p < 0.05.

Results

Induction of distant antitumor effect by irradiation

To investigate whether RT could induce the distant antitu-
mor effect, or the so-called abscopal effect, in HER2-posi-
tive cancer-bearing mice, we evaluated tumor sizes bilater-
ally in the Rad and Non groups. Tumors grew rapidly in the 
Non group, while in the Rad group, both unirradiated and 
irradiated tumors exhibited growth inhibition after begin-
ning treatment (Fig. 2). This finding indicates that the distant 
antitumor effect was induced by RT in HER2/neu-expressing 
tumors.

Spleens were removed 14 d after beginning treatment in 
the Non and Rad groups to confirm whether a systemic tumor 
antigen-specific immune response was induced. Splenic 
T cells were restimulated with  T2Dq cells pulsed with 
RNEU or a control peptide. Subsequently, the proportion 

of CD8-positive T cells secreting IFN-γ was determined by 
ICS. The proportion of RNEU-specific CD8-positive T cells 
in the RT group was significantly increased compared to that 
in the Non group (p = 0.046; Non = 0.068%, Rad = 0.12%).

Enhancement of RT‑induced distant antitumor 
effect by ICIs

The growth of unirradiated tumors among the four groups 
(Non, n = 4, Rad, P1C4, and R + P1C4, n = 6) is shown in 
Fig. 3. Tumors in the Non group continued to grow, while 
tumors in other groups exhibited substantially suppressed 
growth post-treatment. Tumors in the P1C4 group and unir-
radiated tumors in the Rad group initially showed similar 
growth inhibition, but the Rad group grew rapidly after 40 
d treatment. Unirradiated tumors in the R + P1C4 group 
showed the most growth suppression, but no mice showed 
complete response. These findings indicate that ICIs enhance 
the RT-induced distant antitumor effect.

Enhancement of RT‑induced antitumor immunity 
by ICIs

Figure 4 shows the results of inducing systemic tumor 
antigen-specific immune response in the spleen using RT 
with ICIs. The proportion of RNEU-specific CD8-positive 

Fig. 2  Tumor growth curve in the Non and Rad groups. The orthogo-
nal tumor diameter (length and width) was measured every 3 days, 
and tumor size was calculated as length × width  (mm2). The graph 
shows the change in tumor size between the Non and Rad groups. 
Mean tumor sizes ± SD of bilateral tumors in the Non group (n = 8), 
Rad (n = 4) and unirradiated tumors in the Rad group (r-Rad, n = 4) 
are shown. *p  < 0.05, **p  < 0.01
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T cells was significantly higher in the R + P1C4 group than 
in the P1C4 (p = 0.00072) and Rad (p = 0.000014) groups.

Whether antitumor immunity was induced locally in 
the tumor was determined by IHC (Fig. 5). Unirradiated 
tumors in the Rad group did not exhibit more TILs com-
pared to that in the Non group. Tumors in the P1C4 group 
had significantly increased number of CD8-positive cells 
compared to the Non group (p = 0.0061). Unirradiated 
tumors in the R + P1C4 group had significantly increased 
number of CD8-positive cells compared to the Rad group 
(p < 0.00001) and in the P1C4 group (p = 0.0086). In addi-
tion, unirradiated tumors in the R + P1C4 group showed 
higher infiltration of CD4-positive helper T cells and 
FOXP3-positive cells than that observed in the Rad group 
(p < 0.05, p < 0.001, respectively) and in the P1C4 group 
(p = 0.77, p < 0.001, respectively).

Figure 6 shows the results of tumor antigen-specific 
immune response induction in TILs. Unirradiated tumors 
in the Rad group showed significantly more RNEU-spe-
cific CD8-positive T cells of the TILs compared to those 
in the Non group (p = 0.027). Additionally, unirradiated 
tumors in the R + P1C4 group demonstrated significantly 
increased percentages of RNEU-specific CD8-positive T 

cells in TILs compared to unirradiated tumors in the Rad 
(p < 0.00001) or P1C4 (p < 0.00001) groups.

Discussion

We established a model to induce a local RT-induced distant 
antitumor effect outside the irradiated field using tumor cells 
overexpressing HER2/neu, an essential tumor progression 
driver. This study had three main findings. First, RT alone 
induced the distant antitumor effect in HER2/neu-expressing 
tumors. Second, RT to HER2/neu-positive tumors produced 
tumor antigen-specific CTLs, which may underlie the distant 
antitumor effect. Third, addition of dual ICI to RT increased 
the accumulation of tumor antigen-specific CTLs in the 
spleen and at the tumor site, thereby enhancing the distant 
antitumor effect.

Dewan et al. [15] showed that induction of tumor antigen-
specific CD8-positive T cells by RT caused tumor shrink-
age outside the irradiated field. Irradiation may release 
damage-associated molecular patterns and other sub-
stances, activating dendritic cells, thereby inducing antigen-
specific CD8-positive T cells [16]. We demonstrated that 
RT against HER2/neu-expressing tumors induced tumor 

Fig. 3  Tumor growth curve in Non, P1C4, Rad, and RP1C4 groups. 
The orthogonal tumor diameter (length and width) was measured 
every 2–4 days, and tumor size was calculated as length × width 
 (mm2). The graph shows the size changes in the following four 
groups: no treatment (Non, n = 4), anti-PD-1 and anti-CTLA-4 anti-
bodies (P1C4, n = 6), irradiation of the large tumor (Rad, n = 6), or 
combination (R + P1C4, n = 6) groups. The mean tumor size ± SD of 
small tumors in the Non (n = 4) and P1C4 (n = 6) groups and unirradi-
ated tumors in the Rad (r-Rad, n = 6) and R + P1C4 (rR + P1C4, n = 6) 
groups are shown

Fig. 4  Frequency of HER2/neu-specific effector CD8-positive T 
cells in splenocytes. Spleens of mice from four groups (Non, P1C4, 
Rad and R + P1C4) were removed 14 days after beginning treatment. 
Splenic T cells were determined by the percentage of CD8-positive 
T cells expressing IFN-γ when exposed to RNEU (immunodominant 
against the tumor antigen neu) or a control peptide nuclear protein 
(NP) by intracellular staining. Upper row a representative data for 
the proportion of HER2/neu-specific effector CD8-positive T cells in 
each group from triplicate experiments. Error bars show three aver-
age SD values. Bottom row (b–e): dot plot. *p < 0.05, **p < 0.01, 
***p  < 0.001
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antigen-specific CD8-positive T cells in the spleen and 
caused these cells to accumulate in the tumor. Furthermore, 
CD8-positive T cells produced cytokines in response to the 
HER2/neu tumor antigen. Therefore, these tumor antigen-
specific immune mechanisms may contribute substantially 
to the distant antitumor effect outside the irradiated field.

In clinical practice, tumor shrinkage outside the irradiated 
field is rarely induced by RT alone; even in animal models, 
the distant antitumor effects of RT alone are weak. How-
ever, Demaria et al. [6] reported that co-administration of 
an anti-CTLA4 mAb with RT of 4T1 mouse breast can-
cer both enhanced the therapeutic effect of irradiated local 
tumors and suppressed metastasis. RT with immunomodu-
lators, such as an ICI, enhances the distant antitumor effect 

[15, 17]. Victor et al. [17] reported that the combination of 
anti-PD-L1 and anti-CTLA4 mAbs had a higher antitumor 
effect than the use of an ICI alone. Our preliminary study, 
which used the same tumor model as this study, showed 
that the combination of RT and dual ICI was more effective 
than the combination of RT and an ICI monotherapy (data 
not shown). Accordingly, we utilized the combination of RT 
and dual ICI in this investigation. Here, dual ICI combined 
with RT further suppressed HER2-positive tumor growth 
on the unirradiated side compared to RT alone, indicating 
an enhanced the RT-induced antitumor immune effect. The 
combination of RT and dual ICI showed increased HER2-
specific CD8-positive T cells in the spleen and increased 
TILs. Among the TILs, HER2-specific CD8-positive T cells 

Fig. 5  Expression of CD8, CD4, and FOXP3 in TILs of unirradi-
ated tumors. Tumors of mice from four groups (Non, P1C4, Rad, and 
R + P1C4) were removed 14 days after beginning treatment. Immuno-
histochemical staining (CD8, CD4, and FOXP3) was performed. The 
number of CD4-positive helper T cells was calculated by subtract-
ing the number of FOXP3-positive cells from the number of CD4-

positive cells. Upper row: a–l typical images of each immunostain-
ing. Positive cells are shown as brown. Lower graph: m–o the average 
number of positive cells in the three tumors. The reliability between 
the observers was ICC (2,1) = 0.84. Error bars show average SD val-
ues. *p  < 0.05, **p  < 0.01, ***p  < 0.001
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had an increased proportion. The HER2/neu tumor antigen 
is essential for the growth of HER2-positive tumors such as 
human breast cancer, as well as the NT2.5 cells used in this 
study. The findings in this study suggest that the combina-
tion of RT and ICIs may improve the distant antitumor effect 
away from the irradiation field by inducing systemic and 
local enhancement of the specific immune response against 
essential tumor antigens.

ICI is attracting attention as a therapeutic agent for HER2-
positive tumors. Following a clinical trial for HER2-positive 
gastric cancer and gastro-esophageal junction cancer, the 
Food and Drug Administration approved the addition of an 
anti-PD-1 mAb to a conventional first-line treatment with 
combination chemotherapy and an anti-HER2 mAb [18]. In 
contrast, clinical trials of anti-HER2 and anti-PD-1 mAbs 
for high-risk HER2-positive breast cancer were discontin-
ued due to poor interim results [19]. Although treatment of 
HER2-positive tumors with RT and an ICI remains uncom-
mon, RT combined with anti-CTLA-4 and anti-HER2 mAbs 
increased the disease control rate after 12 weeks in patients 
with HER2-positive breast cancer and brain metastases 
[20]. These findings suggest that successful treatment of 

ICIs requires tumor antigen release, an important part of the 
cancer-immunity cycle [21], which is elicited by cytotoxic 
treatments such as chemotherapy or irradiation for HER2-
positive tumors. We have shown that the combination of 
dual ICI and RT, rather than dual ICI alone, enhances the 
generation of HER2 antigen-specific CTLs and the distant 
antitumor effect in HER2-overexpressing tumors, indicating 
that RT is essential for enhancing the function of ICIs. Taken 
together, the combination of tumor irradiation and systemic 
dual ICI administration is promising for the treatment of 
distant metastatic HER2-positive tumors.

In this study, cellular immunity was induced in tumors 
treated with RT and ICIs; however, simultaneously, FOXP3-
positive regulatory T cells (Tregs), which suppress the cel-
lular immunity, were also accumulated in the tumor. The 
presence of TILs is positively associated with improved 
lymph-node status and prognosis [22], and that the pres-
ence of CD8-positive CTLs in breast cancer is associated 
with good outcomes [23, 24]. In contrast, the presence 
of FOXP3-positive Tregs in breast cancer has been para-
doxically reported to be associated with both reduced and 
improved survival [25]. In addition, a statistically significant 
positive correlation was reported between CD8-positive and 
FOXP3-positive cell infiltration in TILs [25]. Furthermore, 
the infiltration of CD8-positive cells and a high CD8/FOXP3 
ratio are associated with a good prognosis in breast cancer 
[26]. These findings suggest that the increase in Tregs may 
be an inhibitory response to the increased cellular immunity 
induced by combination therapy with RT and ICIs.

One strategy to improve this treatment is to determine 
the optimal timing of ICIs administration to enhance the 
distant antitumor effect outside the irradiated field. Here, the 
anti-CTLA-4 mAb was administered concurrently with the 
start of RT to function during the priming phase of T-cell 
activation, and the anti-PD-1 mAb was administered to work 
during the T-cell effector phase. However, a previous study 
reported that the survival rate was higher when an anti-
CTLA-4 blockade was used before RT [25] as a result of 
Tregs depletion. Therefore, the use of the anti-CTLA4 mAb 
prior to RT may suppress Tregs infiltration into the tumors 
mediated by the combination of RT and ICIs, leading to 
improved therapeutic effects. Further studies must determine 
the optimal timing of administration.

Another strategy is to find an efficient drug combination 
to increase the number of RT-induced antigen-specific CTLs. 
Co-administration of an HER2-specific mAb with an HER2-
targeted tumor vaccine enhanced the induction of HER2/
neu-specific CD8-positive T cells through Fc-mediated den-
dritic cell activation [27]. Irradiation of HER2-expressing 
tumors showed vaccine-like effects, suggesting that treat-
ment with an anti-HER2 mAb combined with irradiation can 
induce HER2-specific CTLs. Besides the anti-HER2 mAb, 
an agonistic anti-OX40 mAb that intensively enhances T-cell 

Fig. 6  Frequency of HER2/neu-specific effector CD8-positive tumor-
infiltrating T cells of unirradiated tumors. Tumors of mice from four 
groups (Non, P1C4, Rad, and R + P1C4) were removed 14 days 
after beginning treatment. Tumor-infiltrating lymphocytes (TILs) 
were purified and the percentage of CD8-positive T cells express-
ing IFN-γ when exposed to RNEU (immunodominant against the 
tumor antigen neu) or the irrelevant target nuclear protein (NP) by 
intracellular staining were determined. Upper row: a representative 
data for the proportion of HER2/neu-specific effector CD8-positive 
T cells in each group of TILs (triplicate experiments). In the groups 
that included RT, data on the unirradiated side are shown. Error bars 
show three average SD values. Bottom row: b–e: a typical dot plot. 
*p  < 0.05, **p  < 0.01, ***p  < 0.001
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activation and proliferation is a candidate combination drug 
[28]. Previously, we have shown that an anti-OX40 mAb can 
abrogate regulatory T-cell-mediated suppression [29]. An 
anti-OX40 mAb causes tumor shrinkage outside the irradi-
ated field in other tumors [30, 31], and further synergistic 
effects are expected when combined with ICIs.

This study has some limitations. First, while this study 
describes the importance of tumor antigen-specific CD8-
positive T cells in the RT-induced antitumor immune effect, 
it does not show that the antitumor effect is abrogated when 
CD8-positive T cells are inhibited. Second, immunological 
experiments were conducted on the HER2 antigen, a foreign 
antigen for FVB mice. Therefore, the immune environment 
differs from that in patients with HER2-expressing tumors, 
who are tolerant of this endogenous tumor antigen. In the 
future, a tolerance model, such as the HER2-transgenic 
FVB mouse model that is tolerant to the HER2 antigen and 
causes spontaneous HER2-overexpressing breast cancer and 
then metastases, should be employed to generate clinically 
relevant result. Third, we showed the HER2-specific CTLs 
induction by the combination of RT and ICIs using only an 
HER2-overexpressing tumor cell line. However, to obtain 
convincing evidence of RT-induced antitumor immune 
effects on HER2-expressing tumors, it is necessary to com-
pare these results with those of a non-HER2-overexpressing 
cell line or another HER2-overexpressing cell line. Fourth, 
we have not examined the optimal timing of ICIs adminis-
tration. In particular, the effective timing of the administra-
tion of the anti-CTLA4 mAb, which may deplete Tregs and 
prevent local Treg-accumulation of the tumor, needs to be 
investigated in detail.

In conclusion, RT induces an antitumor immune effect in 
HER2-positive tumor-bearing mice. Moreover, combining 
the anti-PD-1 mAb and anti-CTLA-4 mAb administration 
enhanced the RT-induced distant antitumor effects involved 
in the accumulation of HER2-tumor antigen-specific CD8-
positive T cells at HER2-positive tumor sites. However, 
FOXP3-positive Tregs with immune inhibitory functions 
also accumulated at the tumor sites. Our data suggest that 
RT with dual ICI may be a promising strategic option for the 
treatment of distant metastatic HER2-positive tumors; how-
ever, optimizing the timing of dual ICI or the combination 
of drugs inhibiting the Treg function is further required to 
enhance the RT-induced durable antitumor immune effects.
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