Optimal Sampling Strategy and Threshold of Serum Vancomycin Concentration in Elderly Japanese Patients undergoing High-flux Hemodialysis

3

Akio Ogawa, BS^{a,b}; Daiki Hira, PhD^{b,c,*}; Masayuki Tsujimoto, PhD^d; Kohshi Nishiguchi, PhD^d;
Masanori Endo, BS^a; Toshiaki Ono, BS^a; Tsuguru Hatta, MD, PhD^{a,e}; Tomohiro Terada, PhD^{b,f}; and
Shin-ya Morita, PhD^{b,*}

 $\overline{7}$

8 ^aDepartment of Pharmacy, Omihachiman Community Medical Center, Omihachiman, Shiga, Japan

⁹ ^bDepartment of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan

- 10 °College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹¹ ^dDepartment of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
- 12 ^ePresent address: Hatta Medical Clinic, Kyoto, Japan
- 13 ^fPresent address: Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital,
- 14 Kyoto, Japan
- 15

16 *Corresponding Authors

17 Daiki Hira, PhD

18 College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-

- 19 8577, Japan
- 20 Tel.: +81-77-561-3046
- 21 Fax.: +81-77-561-3046
- 22 E-mail: <u>hirad@fc.ritsumei.ac.jp</u>
- 23
- 24 Shin-ya Morita, PhD
- 25 Department of Pharmacy, Shiga University of Medical Science Hospital, Seta Tsukinowa-cho, Otsu,

- 26 Shiga 520-2192, Japan
- 27 Tel.: +81-77-548-2681
- 28 Fax.: +81-77-548-2681
- 29 E-mail: smorita@belle.shiga-med.ac.jp
- 30

31 Conflicts of Interest and Source of Funding

This work was not supported by any grants. The authors declare that they have no known competing interests or personal relationships that could have influenced the work reported in this paper.

35 ABSTRACT

36 Background

The optimal sampling points and thresholds for initial serum vancomycin (VCM) concentrations have not been determined in hemodialysis (HD) patients. To clarify this, multiple blood tests were performed, and the correlations between VCM concentrations at several sampling points and the area under the concentration-time curve for 24 h (AUC_{24h}) were analyzed.

41 Methods

42 A single-center, prospective observational study was conducted. Patients with end-stage renal 43 failure who received VCM treatment while undergoing chronic maintenance HD were enrolled in this 44 study. HD was performed using a high-flux membrane as the dialyzer. After VCM administration, 45 seven points were sampled between the 1st and 2nd HD. The AUC_{24h} after the end of the 1st HD (AUC₀₋ 46 24) and that before the end of the 2nd HD (AUC₂₄₋₄₈) were calculated using the linear trapezoidal method. 47 Correlation analysis and simple regression analysis between AUC_{24h} and serum concentrations were 48 performed at each sampling point.

49 **Results**

Nine patients were evaluated. Strong correlations were found between AUC₂₄₋₄₈ and serum concentrations at 24 h after the initiation of VCM treatment following the 1st HD (C_{24h}, R = 0.983 and P < 0.001), between AUC₀₋₂₄ and C_{24h} (R = 0.967 and P < 0.001), and between AUC₂₄₋₄₈ and serum concentration just before the 2nd HD (C_{pre(HD2)}, R = 0.965 and P < 0.001). Regression equations with high coefficients of determination ($R^2 > 0.9$) were obtained, and a C_{24h} of \geq 18.0 mg/L and a C_{pre(HD2)} of \geq 16.5 mg/L were required to achieve an AUC₂₄₋₄₈ value of \geq 400 mg·h/L. In addition, a C_{24h} of \leq 23.3 mg/L was estimated to satisfy the AUC₀₋₂₄ range of \leq 600 mg·h/L.

57 Conclusion

58 C_{24h} and $C_{pre(HD2)}$ are optimal sampling points for predicting VCM-AUC_{24h} in HD patients.

KEYWORDS 60

62

61

Vancomycin, Hemodialysis, Therapeutic drug monitoring, AUC, Pharmacokinetics

63

BACKGROUND

Since hemodialysis (HD) patients are often older adults and immunocompromised hosts, the rate 64of mortality from infection among these patients is significantly higher than that in non-HD patients.¹ 65In particular, HD patients are more likely to be infected with Staphylococcus species through vascular 66access.^{1, 2} Therefore, vancomycin (VCM), a standard anti-methicillin-resistant Staphylococcus aureus 67 (MRSA) drug, is empirically administered as a first-line treatment.^{3, 4} To achieve the desired effects 68 and prevent adverse effects and bacterial resistance, therapeutic drug monitoring (TDM) and use of an 69 administration method based on the pharmacokinetics (PK)/pharmacodynamics (PD) theory are 70required for VCM therapy.^{5, 6} 71

In non-HD patients, the area under the concentration-time curve for 24 h/minimum inhibitory 72concentration (AUC_{24h}/MIC) is the most useful PK/PD parameter in predicting the effectiveness of 73VCM.^{7, 8} An AUC_{24b}/MIC of >400 mg·h/L is the recommended target value to achieve efficacy.^{6, 9, 10} 74In recent years, an AUC_{24h} threshold value of 400–600 mg·h/L has been proposed for the non-HD 75population with severe MRSA infections.^{11, 12} However, VCM AUC_{24h} is difficult to measure in daily 76practice, because multiple blood tests are required to calculate the VCM AUC_{24h}.^{6, 13} The VCM trough 77concentration, which is highly correlated with AUC_{24h}, has traditionally been measured as surrogate 78markers for non-HD patients.^{6, 14, 15} The target trough concentration range is 15–20 mg/L for serious 79MRSA infections.¹⁶⁻¹⁸ In recent years, VCM TDM for serious MRSA infections in non-HD patients 80 has helped determine the recommended doses based on the VCM AUC24h, which is accurately 81 estimated through minimal PK sampling using a Bayesian software or PK equations.¹¹ 82

Compared with non-HD patients, HD patients have different PK characteristics. The distribution 83 84 of VCM is similar between HD patients and non-HD patients, but total clearance and protein binding

of VCM in HD patients are lower than those in non-HD patients.^{13, 19} VCM is efficiently removed by 85 high-flux dialysis membranes,²⁰⁻²² and a rebound effect in serum VCM concentration is observed 86 immediately after the completion of HD.²³⁻²⁵; thus, HD patients require a different approach to 87 managing VCM TDM in clinical practice. However, established guidelines on the timing and 88 frequency of TDM in HD patients are limited.^{11, 26} Currently, when performing VCM TDM for HD 89 patients, the pre-HD serum VCM levels are often sampled instead of the trough levels.^{11, 27, 28} However, 90 it is unknown which pre-HD or other sampling points correlate best with AUC_{24h}. Furthermore, the 91optimal serum VCM concentration range for HD patients has not been clarified based on its correlation 92with AUC_{24h}.^{13, 29} 93

In this study, to clarify the optimal sampling point and the optimal concentration range in HD patients, multiple blood tests were performed, and the correlation between VCM concentration at each sampling point and AUC_{24h} was analyzed.

97

98 METHODS

99 Study Design and Patients

This single-center, prospective observational study was conducted in Omihachiman Community 100 Medical Center in Japan. It was performed in accordance with the Declaration of Helsinki and was 101102approved by the Institutional Review Board at Omihachiman Community Medical Center (registration number: 23-6). Written informed consent was obtained from all patients prior to study entry. The 103 104 recruitment period for this study was set between January 2012 and April 2013, and patients with end-105stage renal failure who received VCM treatment while undergoing HD at our institution were enrolled. 106 Meanwhile, patients (1) for whom VCM treatment was not performed in accordance with the 107administration protocol defined in our institution; (2) who experienced failures during blood sampling; (3) who underwent a different type of renal replacement therapy, such as continuous renal replacement 108

therapy, sustained low efficiency dialysis, or peritoneal dialysis (PD); (4) who had a daily urine volume of >400 mL; and (5) whose interval between the 1^{st} HD and 2^{nd} HD was 72 h were excluded.

All patients underwent HD three times per week via vascular access. HD was performed using a high-flux membrane, such as a polymethylmethacrylate or polysulfone membrane as the dialyzer. Dialysis was performed using a TR-3000M[®] dialysis monitoring machine (Toray Co., Inc., Tokyo, Japan). The following parameters were recorded: dialysis membrane area, dialysis time, blood flow rate, dialysate flow rate, and total water removal.

116

117 Administration of VCM

VCM (vancomycin hydrochloride for intravenous infusion, 0.5 g [MEEK[®]], Meiji Seika Pharma Co., Inc., Tokyo, Japan) was administered based on the administration protocol of Omihachiman Community Medical Center. The loading doses were 1,000 mg on the first day (day 1) and 500 mg on the second day (day 2), while the maintenance dose was 500 mg, which was administered immediately after each HD session. The first HD day after the administration of the loading dose was set as the 1st HD day. The next HD day after the 1st HD was set as the 2nd HD day. The duration of VCM administration was 60 min.

125

126 **Data Collection**

As shown in Table 1, the serum VCM concentrations at seven points were collected from each participant according to the planned sampling schedule. To measure serum VCM concentration, approximately 3 mL of blood samples were collected in Venoject II[®] vacuum blood collection tubes (Terumo Co., Inc., Tokyo, Japan). All blood samples were centrifuged at $2,250 \times g$ for 6 min. The serum VCM concentrations were measured using a chemiluminescence immunoassay instrument (Architect[®], 132 Abbott Japan Co., Inc., Tokyo, Japan; limit of quantification: 3.0 mg/L; coefficient of variation: $\leq 10\%$).

133 The apparent HD removal rate of the VCM was calculated based on the concentrations obtained134 immediately before and after HD:

135 % removal =
$$[(C_{pre(HD)} - C_{end(HD)}) / C_{pre(HD)})] \times 100$$
 (Eq. 1)

where % removal is the apparent percent removal of VCM during the HD period, $C_{pre(HD)}$ is the serum VCM concentration obtained immediately before HD (mg/L), and $C_{end(HD)}$ is the serum VCM concentration obtained at the end of HD (mg/L). Here, since the enrollees were HD patients with oliguria and end-stage renal failure, the VCM removal rate due to the patient's residual renal function was smaller than that due to HD. The apparent removal rate during the HD period may be reflected by HD and residual renal clearance.

The half-lives and elimination constants during the non-HD period (i.e., the patient's own values, $T_{1/2(Pt)}$ and $k_{e(Pt)}$) and HD period ($T_{1/2(HD)}$ and $k_{e(HD)}$) were calculated as follows:

144
$$T_{1/2(HD)} = 0.693/k_{e(HD)}$$
 (Eq. 2)

145
$$k_{e(HD)} = \ln \left(C_{pre(HD)} / C_{end(HD)} \right) / T_{HD}$$
(Eq. 3)

146
$$T_{1/2(Pt)} = 0.693/k_{e(Pt)}$$
 (Eq. 4)

147 $k_{e(Pt)} = \ln \left(C_{peak} / C_{pre(HD)} \right) / T_{Pt}$ (Eq. 5)

where T_{HD} is the time (h) between the start and end of HD, C_{peak} is the serum VCM concentration (mg/L) obtained at 2 h after the end of VCM administration, and T_{Pt} is the time (h) between peak and pre-HD sampling.

The VCM AUC_{24h} was calculated using the linear trapezoidal method and defined as follows: AUC₀₋₂₄, AUC calculated for 24 h after the end of the 1st HD; AUC₂₄₋₄₈, AUC calculated for 24 h before the end of the 2nd HD.

155 Statistical Analysis

Correlation analyses between AUC_{24h} and each VCM dose, HD condition, and each sampling point were performed. All correlation analyses were carried out using the Pearson product-moment correlation coefficient test. A simple regression analysis between AUC_{24h} and each sampling point was performed. From the obtained simple regression equation, the concentration range that satisfies an AUC_{24h} of 400–600 mg·h/L was calculated at each sampling point, assuming an *S. aureus* infection with an MIC of 1 mg/L.¹¹ A *P*-value of <0.05 was considered significant. All statistical analyses were performed using IBM SPSS Statistics software (version 25.0; IBM Corp., Armonk, NY, USA).

163

164 **RESULTS**

165 **Patients' Characteristics and HD Conditions**

Twenty patients were enrolled in this study; among them, 11 were excluded. The reasons and number of excluded patients were as follows: (1) VCM administration was different from the protocol defined in our institution (n = 2); (2) experienced failures during blood sampling (n = 2); (3) underwent renal replacement therapy other than HD, such as continuous renal replacement therapy, sustained low efficiency dialysis, PD (n = 4); (4) the daily urine volume was >400 mL (n = 1); and (5) the interval between the 1st and 2nd HD was 72 h (n = 2). A total of nine patients were evaluated, and their baseline characteristics are summarized in Table 2. They were all older adults and low-weight patients.

The dialysis membrane area in each patient did not differ between the 1st and 2nd HD (median: 1.6 m²). The average blood flow rate was less than 200 mL/min in all patients (median: 193.1 mL/min). The dialysate flow rate was maintained at 500 mL/min in all patients. The median total water removal rate was 1,800 mL per HD session.

177 The clinical outcomes and safety information are summarized in Supplemental Table S1. Among

the nine patients, three had poor clinical outcomes after VCM administration: died, clinical outcome remained unchanged, and experienced recurrence. All three patients showed abnormal laboratory values.

181

182 Serum VCM Concentration and Pharmacokinetic Parameters

The serum VCM concentrations at each sampling point are shown in Fig. 1. The C_{pre(HD1)} 183184exceeded 13.0 mg/L in all patients. The VCM concentration levels dropped sharply by approximately 30% after the 1st HD. After VCM maintenance dose administration and reaching C_{peak}, the VCM 185concentration levels gradually decreased until C_{pre(HD2)}. Approximately 20 h after the previous 186sampling, C_{pre(HD2)} exceeded 15.0 mg/L in all patients. During the 2nd HD, the VCM was rapidly 187 removed by approximately 30%. The PK parameters of the VCM are shown in Table 3. With regard to 188the AUC₀₋₂₄, all patients achieved an AUC of \geq 400 mg·h/L (median: 556.4 mg·h/L, range: 425.5– 189 190644.5 mg·h/L). For the AUC₂₄₋₄₈, only 2 patients (Patient 3: 374.1 mg·h/L and Patient 6: 385.1 mg·h/L) achieved an AUC of <400 mg·h/L (median: 462.2 mg·h/L, range: 374.1–529.1 mg·h/L). The VCM 191192 $T_{1/2(HD)}$ was relatively short, whereas the $T_{1/2(Pt)}$ was extremely long (70–200 h).

193

194 Correlation Coefficients Between AUC and Each Variable

No significant correlations were found between AUC_{24h} and VCM dose (day 1, day 2, day 1 + day 2, and maintenance dose). In addition, no significant correlations were found between AUC_{24h} and HD conditions (dialysis membrane area, dialysis time, average blood flow rate, total water removal, and VCM removal rate) (Supplemental Table S2).

Supplemental Table S3 shows the correlation coefficients (R) and P-values between the AUC and serum VCM concentrations at each sampling point. Except for the C_{end(HD)}, the R values between each AUC and serum VCM concentration at each sampling point showed a significant correlation. With regard to AUC₀₋₂₄ and AUC₂₄₋₄₈, the *R* values were higher in $C_{pre(HD2)}$ than in $C_{pre(HD1)}$. The *R* value obtained between AUC₂₄₋₄₈ and C_{24h} was the highest among all sampling points (*R* = 0.983, *P* < 0.001). All *R* values obtained between C_{24h} and AUC₀₋₂₄ and between C_{24h} and AUC₂₄₋₄₈ were also high (all *R* ≥ 0.95). The *R* values between C_{peak} and AUC were high for AUC₀₋₂₄ (*R* = 0.972), but lower for AUC₂₄₋₄₈ (*R* = 0.809). By contrast, the *R* values between C_{pre(HD2)} and AUC were lower for AUC₀₋₂₄ (*R* = 0.806), but higher for AUC₂₄₋₄₈ (*R* = 0.965).

208Fig. 2 shows the scatter plots and simple regression lines between serum VCM concentration at each sampling point and AUC₀₋₂₄ or AUC₂₄₋₄₈. Simple regression lines with high adjusted coefficients 209of determination ($R^2 > 0.9$) were obtained between AUC₀₋₂₄ and C_{peak} (Fig. 2c), C_{24h} (Fig. 2d), AUC₂₄₋ 21021148 and C_{24h} (Fig. 2k), and C_{pre(HD2)} (Fig. 2l). At other sampling points, the R² of the regression lines was low. Based on the regression equations presented in Fig. 2k and 2l (AUC₂₄₋₄₈ = 19.3 C_{24h} + 54.0; 212AUC₂₄₋₄₈ = 24.0 C_{pre(HD2)} + 4.9), a C_{24h} of \geq 18.0 mg/L or a C_{pre(HD2)} of \geq 16.5 mg/L was required to 213214achieve an AUC_{24–48} of \geq 400 mg·h/L. Based on the regression equations in Fig. 2c and 2d (AUC₀₋₂₄ = $20.6 C_{peak} + 15.6$; AUC₀₋₂₄ = 23.4 C_{24h} + 56.8), a C_{24h} of $\leq 23.3 \text{ mg/L}$ and a C_{peak} of $\leq 28.3 \text{ mg/L}$ were 215216necessary to satisfy the AUC₀₋₂₄ of $\leq 600 \text{ mg} \cdot \text{h/L}$.

217

218 **DISCUSSION**

The present study was conducted to determine the optimal sampling strategy and threshold for VCM in HD patients. Our study is the first to demonstrate that C_{24h} at the midpoint between the 1st and 2nd HD was highly correlated with both AUC₀₋₂₄ and AUC₂₄₋₄₈ for HD patients, and the C_{24h} target range was estimated to be 18.0–23.3 mg/L to satisfy the AUC_{24h} range of 400–600 mg·h/L in both periods. Blood sampling pre-HD serum VCM concentration is widely implemented, and our results suggest that C_{pre(HD2)} is a reliable surrogate marker for AUC_{24h} immediately before the measurement date. In addition, a C_{pre(HD2)} of \geq 16.5 mg/L was required to achieve an AUC₂₄₋₄₈ of \geq 400 mg·h/L.

The PK/PD parameter indicating the effectiveness of VCM is AUC_{24h}/MIC ,^{7,8} while an 10

AUC_{24h}/MIC of \geq 400 mg·h/L has been recommended as a treatment target for MRSA infections.^{6, 9, 10} 227In recent years, an AUC_{24h} range of 400–600 mg·h/L has been proposed for the non-HD population 228229with severe MRSA infections.^{11, 12} In the HD population, outcome studies validating the AUC_{24h} goal have not been conducted, but this goal is being validated with the same AUC_{24h} target recommended 230for the non-HD population (400–600 mg·h/L assuming an MIC of 1 mg/L).¹¹ In this study, we also 231232assumed an S. aureus infection with an MIC of 1 mg/L and calculated the concentration range that 233satisfies the AUC_{24h} range of 400-600 mg·h/L at each sampling point from the simple regression analysis results. Since the AUC₀₋₂₄ is always higher than the AUC₂₄₋₄₈, in the present study, the 234235threshold of AUC₀₋₂₄ was set as $\leq 600 \text{ mg} \cdot h/L$ to prevent adverse events, while the threshold of AUC₂₄₋ ₄₈ was set as \geq 400 mg·h/L to achieve clinical effectiveness. Our results suggest that the target ranges 236of C_{24h} and $C_{pre(HD2)}$ are 18.0–23.3 mg/L and \geq 16.5 mg/L, respectively. 237

238The extremely high correlations between C_{24h} and both AUC₀₋₂₄ and AUC₂₄₋₄₈ (Supplemental 239Table S3) indicate that C_{24h} can estimate not only the AUC₀₋₂₄ before the C_{24h} sampling, but also the 240AUC₂₄₋₄₈ after the C_{24h} sampling. As shown in the time-serum concentration profile (Fig. 1), serum concentration near the C_{24h} at the midpoint between the 1st and 2nd HD was stable and independent of 241the influence of HD. In addition, because the $T_{1/2(Pt)}$ values tended to be extremely high in HD patients 242(Table 3), as reported in previous studies,^{19,26} the VCM concentration decreases slowly during the non-243HD period in HD patients. Therefore, the AUC_{24h} values just before and after C_{24h} sampling are thought 244to correlate well with C_{24h}. In administering VCM for HD patients, the pre-HD serum concentrations 245are often sampled instead of the AUC_{24h} values,^{11, 27, 28} but C_{24h} can be a more optimal sampling time 246247in this study. Achieving the optimal serum concentration range early in the administration enhances the effectiveness of VCM.^{16, 30, 31} Thus, sampling at C_{24h} may be useful for healthcare professionals to 248249estimate the AUC_{24h} in HD patients.

In general, pre-HD blood sampling is recommended in chronic HD patients treated with VCM.^{25,} 251 27 The results of this study also showed that both C_{pre(HD1)} and C_{pre(HD2)} were strongly correlated with

 AUC_{0-24} and AUC_{24-48} , respectively. In the comparison between pre-HD concentrations in this study, 252C_{pre(HD2)} is more likely to be correlated with both AUC₀₋₂₄ and AUC₂₄₋₄₈ than C_{pre(HD1)} (Supplemental 253254Table S3), indicating that C_{pre(HD2)} is a better predictive marker for AUC_{24h} than C_{pre(HD1)}. Clark et al. (2019) previously reported that VCM trough concentrations in non-HD patients were strongly 255256correlated with AUC_{24h} (R = 0.731, P < 0.001). As a result of this study, C_{pre(HD2)} was even more highly correlated with AUC_{24h} than the previously reported trough concentrations in non-HD patients.¹⁵ 257Therefore, similar to C_{24h}, C_{pre(HD2)} can also be a surrogate marker and is highly correlated with AUC_{24h} 258immediately before the measurement time. 259

260In addition, VCM was administered immediately after the HD. Therefore, the actual VCM trough concentration was at the end of the HD. However, the correlations between serum VCM concentrations 261at the end of HD (Cend(HD1) and Cend(HD2)) and AUC24h were low among the sampling points 262(Supplemental Table S3). The serum concentration immediately after the end of HD has a rebound 263effect of 20%–40%; therefore, it does not accurately reflect the drug concentration in the body.^{23, 24, 25} 264265The estimated thresholds of C_{24h} and $C_{pre(HD2)}$ were ≥ 18.0 and ≥ 16.5 mg/L, respectively, to achieve an AUC₂₄₋₄₈ of \geq 400 mg·h/L. In HD patients, the current target value of pre-HD serum VCM 266concentration is 15–20 mg/L.^{11, 26, 32} Fu et al. (2018) reported that a $C_{pre(HD)}/MIC$ of ≥ 18.6 mg/L might 267be associated with improved VCM treatment outcomes in MRSA bacteremia in HD patients.³³ 268Although the threshold reported in this study was higher than that reported in our study, under the 269assumption of an MIC of 1 mg/L, C_{pre(HD)} needs to be slightly higher than 15 mg/L, which supports 270our results. 271

The correlation between C_{peak} and AUC_{24h} was higher for AUC_{0-24} than for AUC_{24-48} . C_{peak} tends to depend on the dose and volume of the distribution rather than the individual patient clearance. C_{peak} was unable to sufficiently reflect the subsequent elimination phase and had a relatively poor correlation with AUC_{24-48} . In non-HD patients, routine peak measurements are not recommended because peak serum VCM levels do not correlate with efficacy or toxicity.^{34, 35} However, for HD patients in this study, the correlation between the peak value, C_{peak} , and AUC_{0-24} was as high as that between C_{24h} and AUC_{0-24} , and the peak level measurement may be suitable for estimating the AUC_{0-24}.

Only Patients 3 and 6 had an AUC₂₄₋₄₈ value of <400 mg·h/L (Table 3); Patient 3 died 14 days after the initiation of VCM treatment, while Patient 6 had an unchanged outcome according to the attending physician's judgment (Supplemental Table S1). Patient 3 also showed abnormal changes in the blood test values during the period of VCM treatment, which may be due to the patient's worsening condition. In Patient 9, the AUC₂₄₋₄₈ value was 526.8 mg·h/L; however, the clinical outcome remained unchanged, and MRSA infection recurred after 43 days. The AUC₀₋₂₄ value of Patient 9 exceeded 600 mg·h/L, and the AST levels significantly increased.

286For HD patients, some studies reported that administration of a VCM loading dose of 20 mg/kg or more helped reach the target concentration early during the initial treatment period.^{22, 32, 36} Because 287288the patients had a lower weight and received a relatively high VCM dose per actual dry body weight (Table 2), all patients achieved an AUC₀₋₂₄ of \geq 400 mg·h/L early during the dosing period. However, 289the correlation analysis showed no significant correlation between the VCM dose and AUC_{24h} 290(Supplemental Table S2). No significant correlations were also found between AUC_{24h} and HD 291conditions (Supplemental Table S2). VCM clearance by dialysis depends on several factors, including 292293the type of dialysis membrane and filter, dialysis time, ultrafiltration rate, blood flow rate, and dialysate flow rate.^{25, 27} On the contrary, body weight, duration of dialysis alone, blood flow rate, and dialysate 294flow rate were previously found not to be predictive of VCM removal in high-flux HD patients.³⁷ Even 295in HD patients with little residual renal function, the VCM clearance rates varied.^{19, 26, 38} Our results 296297suggest that it is difficult to estimate the VCM AUC_{24h} in HD patients based only on each HD condition. HD patients still have the capacity for extrarenal or residual renal clearance of VCM in addition 298to HD clearance.^{13, 27} In this study, the patients' own VCM elimination constants ($k_{e(Pt)}$) were smaller 299300 than that during the HD period ($k_{e(HD)}$), but a large interindividual variability in $k_{e(Pt)}$ was observed (Table 3). The interindividual variability was also observed in the difference between AUC_{0-24} and 301

AUC₂₄₋₄₈ (Patient 4: 43.4 mg·h/L; Patient 8: 132.3 mg·h/L). The patient with a large difference 302between AUC₀₋₂₄ and AUC₂₄₋₄₈ values tended to have a large k_{e(Pt)}. Interindividual differences in 303304AUC_{24h} values were considered to be caused by the patients' own clearance. In addition, the AUC₀₋₂₄ value was above 400 mg·h/L in all patients, while the AUC₂₄₋₄₈ was below 400 mg·h/L in two patients 305306 (Patient 3: 374.1 mg·h/L; Patient 6: 385.1 mg·h/L). As described above, no significant correlations 307 were found between the AUC₂₄₋₄₈ value and VCM dose (Supplemental Table S2), suggesting that the low AUC₂₄₋₄₈ values were due to the individual differences in extrarenal or residual renal clearance. 308Despite the wide individual differences, more than 75% of the study patients achieved an AUC₂₄₋₄₈ 309 310 value of \geq 400 mg·h/L after receiving the protocol-based VCM dose. However, a few patients did not achieve an AUC₂₄₋₄₈ of \geq 400 mg·h/L. Therefore, TDM should be performed in patients undergoing 311HD. 312

This study has some limitations. First, it was a single-center study with a small sample size. 313 314Therefore, an unintended selection bias in patient selection might not have been completely excluded. 315In addition, since almost no patients had an AUC_{24h} value of <400 mg·h/L, it remains unclear whether these results could be directly applied to patients with lower AUC_{24h} values. Moreover, since the 316 Omihachiman Community Medical Center is a community hospital, the possibility of intentional 317 318 treatment and hospital bias exist. Second, because the early stages of VCM treatment was evaluated in actual clinical settings, the findings might not be sufficiently conclusive after completely entering the 319 steady state. Finally, the calculated AUC_{24h} value may be overestimated using the linear trapezoidal 320method. A two-compartment model analysis is commonly used for the pharmacokinetic analysis of 321322VCM. However, a two-compartment model analysis was not used in the present study due to the 323limited number of patients and sampling points. Therefore, our findings need to be validated in a larger prospective study. 324

325

326 CONCLUSION

327	The sampling serum VCM concentration at 24 h after the initiation of VCM treatment following
328	HD can predict the AUC _{24h} , and the serum concentration at this point was thus considered to be an
329	optimal surrogate marker for AUC_{24h} . In the current practice of measuring the pre-HD serum VCM
330	concentration, sampling the serum concentration just before the 2 nd HD may be useful as a surrogate
331	marker for AUC _{24h} . Considering the results of the analysis based on the regression equation in this
332	study, the optimal C_{24h} and $C_{pre(HD2)}$ values should be 18.0–23.3 mg/L and \geq 16.5 mg/L, respectively.
333	
334	
335	
336	ACKNOWLEDGMENTS

We would like to thank the nephrologists, nurses, pharmacists, clinical laboratory technicians, and clinical engineers at Omihachiman Community Medical Center for their contribution to the collection of patients' data.

340

REFERENCES 342

343	1. L	afrance J-P, Rahme E, Lelorier J, Iqbal S. Vascular access-related infections: definitions,
344		incidence rates, and risk factors. Am J Kidney Dis. 2008;52(5):982-993.
345	2.	Vandecasteele SJ, Boelaert JR, De Vriese AS. Staphylococcus aureus infections in
346		hemodialysis: what a nephrologist should know. Clin J Am Soc Nephrol. 2009;4(8):1388-
347		1400.
348	3.	Moellering RC. Vancomycin: a 50-year reassessment. Vol 42; 2006.
349		https://academic.oup.com/cid/article-abstract/42/Supplement_1/S3/275483.
350	4.	Holland TL, Arnold C, Fowler VG. Clinical management of Staphylococcus aureus
351		bacteremia: a review. JAMA. 2014;312(13):1330-1341.
352	5.	Zvonar R, Natarajan S, Edwards C, Roth V. Assessment of vancomycin use in chronic
353		haemodialysis patients: room for improvement. Nephrol Dial Transplant. 2008;23(11):3690-
354		3695.
355	6.	Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult
356		patients: a consensus review of the American Society of Health-System Pharmacists, the
357		Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists.
358		Am J Health Syst Pharm. 2009;66(1):82-98.

359	7.	Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of	
360		beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17(3):479-501.	
361	8.	Prybylski JP. Vancomycin trough concentration as a predictor of clinical outcomes in patient	S
362		with Staphylococcus aureus bacteremia: a meta-analysis of observational studies.	
363		Pharmacotherapy. 2015;35(10):889-898.	
364	9.	Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of	
365		vancomycin and other antimicrobials in patients with Staphylococcus aureus lower	
366		respiratory tract infections. <i>Clin Pharmacokinet</i> . 2004;43(13):925-942.	
367	10.	Men P, Li H-B, Zhai S-D, Zhao R-S. Association between the AUC0-24/MIC ratio of	
368		vancomycin and its clinical effectiveness: a systematic review and meta-analysis. Hegde N	R,
369		ed. PLoS One. 2016;11(1):e0146224.	
370	11.	Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious	
371		methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and	
372		review by the American Society of Health-System Pharmacists, the Infectious Diseases	
373		Society of America, the Pediatr. Am J Heal Pharm. 2020;77(11):835-863.	
374	12.	Tsutsuura M, Moriyama H, Kojima N, et al. The monitoring of vancomycin: a systematic	
375		review and meta-analyses of area under the concentration-time curve-guided dosing and	
376		trough-guided dosing. BMC Infect Dis. 2021;21(1).	17

377	13.	Vandecasteele SJ, De Vriese AS. Vancomycin dosing in patients on intermittent hemodialysis.
378		Semin Dial. 24(1):50-55.
379	14.	Elyasi S, Khalili H. Vancomycin dosing nomograms targeting high serum trough levels in
380		different populations: pros and cons. Eur J Clin Pharmacol. 2016;72(7):777-788.
381	15.	Clark L, Skrupky LP, Servais R, Brummitt CF, Dilworth TJ. Examining the relationship
382		between vancomycin area under the concentration time curve and serum trough levels in
383		adults with presumed or documented staphylococcal infections. Ther Drug Monit.
384		2019;41(4):483-488.
385	16.	Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in
386		patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus
387		guidelines suggested targets. Clin Infect Dis. 2011;52(8):975-981.
388	17.	Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases
389		Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections
390		in adults and children: executive summary. Clin Infect Dis. 2011;52(3):285-292.
391	18.	Bel Kamel A, Bourguignon L, Marcos M, Ducher M, Goutelle S. Is trough concentration of
392		vancomycin predictive of the area under the curve? a clinical study in elderly patients. Ther
393		Drug Monit. 2017;39(1):83-87.

394	19.	Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. <i>Clin</i>
395		<i>Pharmacokinet</i> . 11(4):257-282.
396	20.	DeSoi CA, Sahm DF, Umans JG. Vancomycin elimination during high-flux hemodialysis:
397		kinetic model and comparison of four membranes. Am J Kidney Dis. 1992;20(4):354-360.
398	21.	Quale JM, O'halloran JJ, Devincenzo N, Barth2 RH. Removal of vancomycin by high-flux
399		hemodialysis membranes. Vol 36.; 1992. http://aac.asm.org/.
400	22.	Barth RH, Devincenzo N. Use of vancomycin in high-flux hemodialysis: experience with 130
401		courses of therapy. Vol 50.; 1996.
402	23.	Pollard TA, Lampasona V, Akkerman S, et al. Vancomycin redistribution: dosing
403		recommendations following high-flux hemodialysis. Kidney Int. 1994;45(1):232-237.
404	24.	Clark WR, Leypoldt JK, Henderson LW, Mueller BA, Scott MK, Vonesh EF. Quantifying the
405		effect of changes in the hemodialysis prescription on effective solute removal with a
406		mathematical model; 1999.
407	25.	Launay-Vacher V, Izzedine H, Mercadal L, Deray G. Clinical review: use of vancomycin in
408		haemodialysis patients. Crit Care. 2002;6(4):313-316.
409	26.	Vandecasteele SJ, De Vriese AS. Recent changes in vancomycin use in renal failure. Kidney
410		Int. 2010;77(9):760-764.

411	27.	Crew P, Heintz SJ, Heintz BH. Vancomycin dosing and monitoring for patients with end-
412		stage renal disease receiving intermittent hemodialysis. Am J Health Syst Pharm.
413		2015;72(21):1856-1864.
414	28.	Hui K, Upjohn L, Nalder M, et al. Vancomycin dosing in chronic high-flux haemodialysis: a
415		systematic review. Int J Antimicrob Agents. 2018;51(5):678-686.
416	29.	Zamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity:
417		critical review of the clinical practice. Clin Exp Pharmacol Physiol. 2019;46(4):292-301.
418	30.	Jung Y, Song K-H, Cho J eun, et al. Area under the concentration-time curve to minimum
419		inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-
420		resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents. 2014;43(2):179-183.
421	31.	Álvarez R, Cortés LEL, Molina J, Cisneros JM, Pachón J. Optimizing the clinical use of
422		vancomycin. Antimicrob Agents Chemother. 2016;60(5):2601-2609.
423	32.	Vandecasteele SJ, De Bacquer D, De Vriese AS. Implementation of a dose calculator for
424		vancomycin to achieve target trough levels of 15-20 μ g/mL in persons undergoing
425		hemodialysis. Clin Infect Dis. 2011;53(2):124-129.
426	33.	Fu CF, Huang J Da, Wang JT, Lin SW, Wu CC. The ratio of pre-dialysis vancomycin trough
427		serum concentration to minimum inhibitory concentration is associated with treatment

outcomes in methicillin-resistant Staphylococcus aureus bacteremia. PLoS One.

429 2018;13(3):e0193585.

430 34. Saunders NJ. Why monitor peak vancomycin concentrations? *Lancet (London, England)*.
431 344(8939-8940):1748-1750.

- 432 35. Suzuki Y, Kawasaki K, Sato Y, et al. Is peak concentration needed in therapeutic drug
- 433 monitoring of vancomycin? a pharmacokinetic-pharmacodynamic analysis in patients with
- 434 methicillin-resistant *Staphylococcus aureus* pneumonia. *Chemotherapy*. 2012;58(4):308-312.
- 435 36. Panais R, Hirsch DJ, Dipchand C, Storsley L, Finkle SN. A protocolized approach to

436 vancomycin dosing in conventional hemodialysis. *J Nephrol.* 23(5):569-574.

- 437 37. Pai AB, Pai MP. Vancomycin dosing in high flux hemodialysis: a limited-sampling algorithm.
- 438 *Am J Health Syst Pharm*. 2004;61(17):1812-1816.
- 439 38. Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature
 440 review. *Semin Dial.* 2008;21(1):63-70.

	Abbreviation	Definition	443
1.	Cpre(HD1)	Concentration immediately before the 1st HD after	er the
		initiation of VCM treatment	445
2.	Cend(HD1)	Concentration at the end of the 1 st HD	446
3.	C_{peak}	Concentration at 2 h after the end of VCM administrat	tiop1 _a t
		1 st HD	448
4.	C _{24h}	Concentration at 24 h after the initiation of VCM trea	tment
		at 1 st HD	449
5.	Cpre(HD2)	Concentration immediately before the 2 nd HD after	450 er the
		initiation of VCM treatment	451
6.	$C_{2h(HD2)}$	Concentration at 2 h after the start of the 2 nd HD	452
7.	$C_{end(HD2)}$	Concentration at the end of the 2 nd HD	453
8.	AUC ₀₋₂₄	AUC calculated for 24 h after the end of the 1 st HD	454
9.	AUC24-48	AUC calculated for 24 h before the end of the 2 nd HD	455

442 Table 1. Definition of serum VCM concentration and AUC

456 VCM, vancomycin; AUC, area under the concentration-time curve; HD, hemodialysis

	N	o. of patients		
Total number		9		
Male/female	5/4			
Wound infections		(
(including vascular access infections)		6		
Bloodstream infections		2		
Urinary tract infections	1			
	M	edian (range)		
Age (years)	70.0	(63.0–84.0)		
Actual dry body weight (kg)	43.0	(33.8–50.7)		
Serum albumin (g/dL)	2.6	(2.3–3.3)		
Blood urea nitrogen (mg/dL)	44.3	(28.6–77.4)		
Serum creatinine (mg/dL)	6.6	(2.3–12.0)		
Day 1 dose of VCM (mg/kg)	23.3	(19.7–29.6)		
Day 2 dose of VCM (mg/kg)	12.2	(9.9–14.8)		
Maintenance dose of VCM (mg/kg)	11.6	(9.9–14.8)		

458 VCM, vancomycin; Day 1, the first day of VCM administration; Day 2, the second day of VCM
459 administration

	VCM removal			VCM removal						
Patient		$k_{e(HD1)}$	$T_{1/2(\mathrm{HD1})}$		$k_{e(HD2)}$	T _{1/2(HD2)}	ke(Pt)	T _{1/2(Pt)}	AUC ₀₋₂₄	AUC ₂₄₋₄₈
	rate at 1 st HD	(1-1)	(1)	rate at 2 nd HD	(1-1)	(1)	(1 -1)	(1)		
no.	(0/)	(h ⁻¹)	(h)	(0/)	(h ⁻¹)	(h)	(h ⁻¹)	(h)	(mg·h/L)	(mg·h/L)
	(%0)			(%0)						
1	28.1	0.078	8.9	36.9	0.113	6.1	0.006	123.6	609.6	529.1
2	30.2	0.107	6.5	17.1	0.062	11.2	0.008	82.2	560.9	462.2
3	25.9	0.074	9.4	27.1	0.073	9.6	0.006	120.6	425.5	374.1
4	28.5	0.083	8.3	34.2	0.131	5.3	0.003	206.4	556.4	513.0
5	55.2	0.188	3.7	55.2	0.186	3.7	0.005	130.9	475.5	411.0
6	27.1	0.075	9.3	17.1	0.045	15.4	0.010	69.9	478.7	385.1
7	27.2	0.114	6.1	32.5	0.097	7.2	0.010	69.3	542.9	429.2
8	43.4	0.141	4.9	32.6	0.098	7.0	0.011	64.9	630.5	498.2
9	38.0	0.120	5.8	37.9	0.115	6.0	0.009	79.9	644.5	526.8
Median	30.2	0.107	6.5	32.5	0.098	7.0	0.008	82.2	556.4	462.2

460 **Table 3. VCM PK parameters of each patient**

461 VCM, vancomycin; PK, pharmacokinetics; HD, hemodialysis; Pt, patient own values; $T_{1/2}$, half-life; k_e, elimination constants; AUC₀₋₂₄, AUC 462 calculated for 24 h after the end of the 1st HD; AUC₂₄₋₄₈, AUC calculated for 24 h before the end of the 2nd HD

463 List of Supplemental Digital Contents

464	Supplemental Table S1. Clinical outcomes and safety after VCM administration in each patient
465	

467

466

468 Supplemental Table S3. Correlation coefficients between AUC_{24h} and serum VCM concentrations at
469 each sampling point

Supplemental Table S2. Correlation coefficients between AUC_{24h} and VCM dose or HD conditions

470 Figure legends

Fig. 1. Time-serum concentration profile after the administration of vancomycin (VCM) maintenance
dose. The error-bars represent the standard error of the mean serum VCM concentration of nine patients.
Squares labeled HD indicate the hemodialysis (HD) implementation period. The interval between the
1st HD and 2nd HD was 48 h. Black box indicates the VCM maintenance dose (500 mg), and the
administration time was set to 0.

476

Fig. 2. Scatter plots and regression lines between serum vancomycin (VCM) concentrations and area under the concentration-time curve (AUC) for 24 h. The relationships of AUC calculated for 24 h after the end of the 1st HD (AUC₀₋₂₄) with $C_{pre(HD1)}$ (a), $C_{end(HD1)}$ (b), C_{peak} (c), C_{24h} (d), $C_{pre(HD2)}$ (e), $C_{2h(HD2)}$ (f), and $C_{end(HD2)}$ (g). The relationships of AUC calculated for 24 h before the end of the 2nd HD (AUC₂₄₋₄₈) with $C_{pre(HD1)}$ (h), $C_{end(HD1)}$ (i), C_{peak} (j), C_{24h} (k), $C_{pre(HD2)}$ (l), $C_{2h(HD2)}$ (m), and $C_{end(HD2)}$ (n). *R*², adjusted coefficient of determination

