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Chronic low-grade inflammation underlies the pathogenesis of non-communicable
diseases, including chronic kidney diseases (CKD). Inflammation is a biologically active
process accompanied with biochemical changes involving energy, amino acid, lipid and
nucleotides. Recently, glycolysis has been observed to be increased in several
inflammatory disorders, including several types of kidney disease. However, the factors
initiating glycolysis remains unclear. Added sugars containing fructose are present in
nearly 70 percent of processed foods and have been implicated in the etiology of many
non-communicable diseases. In the kidney, fructose is transported into the proximal
tubules via several transporters to mediate pathophysiological processes. Fructose can
be generated in the kidney during glucose reabsorption (such as in diabetes) as well as
from intra-renal hypoxia that occurs in CKD. Fructose metabolism also provides
biosynthetic precursors for inflammation by switching the intracellular metabolic profile
from mitochondrial oxidative phosphorylation to glycolysis despite the availability of
oxygen, which is similar to the Warburg effect in cancer. Importantly, uric acid, a
byproduct of fructose metabolism, likely plays a key role in favoring glycolysis by
stimulating inflammation and suppressing aconitase in the tricarboxylic acid cycle. A
consequent accumulation of glycolytic intermediates connects to the production of
biosynthetic precursors, proteins, lipids, and nucleic acids, to meet the increased
energy demand for the local inflammation. Here, we discuss the possibility of fructose
and uric acid may mediate a metabolic switch toward glycolysis in CKD. We also suggest
that sodium-glucose cotransporter 2 (SGLT2) inhibitors may slow the progression of CKD
by reducing intrarenal glucose, and subsequently fructose levels.
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INTRODUCTION

Chronic kidney disease (CKD) has increased in the last decades
and is a major cause of morbidity and mortality. Central to both
diabetic and non-diabetic CKD is intrarenal inflammation and
fibrosis. Here we present a novel hypothesis that fructose, either
provided in the diet or produced endogenously, could play a key
role in causing disease through its ability to induce inflammation
through a Warburg effect. We also posit that this could explain
the protective benefit of the sodium-glucose cotransporter-2
(SGLT2) inhibitors. While others have suggested that SGLT2
inhibitors may provide renal protection by reversing the
Warburg effect (1), here we suggest endogenous fructose
metabolism could be the mediator of the Warburg effect in this
manuscript and we suggest a mechanism by which SGLT2
inhibitors could reduce fructose metabolism in the kidney.
Since fructose is endogenously produced even in non-diabetic
conditions, our hypothesis could be applied to how SGLT2
inhibitors improve both diabetic and non-diabetic CKD.
FRUCTOSE, THE METABOLIC
SYNDROME, AND CKD

Fructose is a simple sugar present in fruit and honey, and is also a
major component of added sugars such as sucrose (a
disaccharide of fructose and glucose) and high fructose corn
syrup (HFCS, a combination of monosaccharide of fructose and
glucose). Fructose intake has skyrocketed over the last century in
association with the overall increased intake of added sugars.

Fructose can also be produced in the body by activation of the
aldose reductase (AR) in the polyol pathway (Figure 1). A variety
of stimuli are known to increase AR expression, including
ischemia, hypoxia, hyperglycemia, hyperosmolality, and uric
acid (2–5). While endogenous fructose production is usually
low, there is increasing evidence that endogenous fructose
production is increased not only in diabetes (6, 7), but also
from a high carbohydrate diet, salty foods, and alcohol common
to the western diet (8–11).

Research has implicated a role for fructose in many
noncommunicable diseases, including obesity, diabetes,
nonalcoholic fatty liver disease, and heart disease (12, 13) and
both acute and chronic kidney disease (5, 6, 14, 15). Classically,
this has been ascribed to fructose’s effect to stimulate oxidative
stress, endothelial dysfunction, stimulation of vasopressin, and
uric acid generation (12, 13, 16).

Recently we reviewed evidence that fructose may also aid
cancer growth by turning on a metabolic switch favoring
mitochondrial respiration over glycolysis, resembling the
Warburg effect (17, 18). The Warburg effect is also likely
involved in the progression of non-tumor disorders, including
pulmonary hypertension, cardiovascular diseases, neuronal
disorders, and kidney diseases (19). Here we suggest that the
Warburg effect due to fructose might have a role in chronic
kidney disease (CKD).
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FRUCTOSE METABOLISM AND THE
WARBURG EFFECT

Glycolysis is the metabolic pathway that converts glucose into
pyruvate, that can enter the tricarboxylic acid (TCA) cycle in
mitochondria where ATP is generated through oxidative
phosphorylation. Fructose is distinct from glucose in that it is
uniquely metabolized to Fructose 1-phosphate (Fru1P). Fru1P can
be subsequently metabolized to link with the glycolytic pathway
(Figure 1). During fructose metabolism, the activation of the C
isoform of fructokinase (Ketohexokinase-C; KHK-C) reduces both
phosphate and adenosine triphosphate (ATP) in the cell, and
triggers the degradation of adenosine monophosphate (AMP) by
AMP deaminase toward uric acid production. Uric acid is an
intracellular pro-oxidant and is capable of suppressing aconitase,
the enzyme catalyzing citrate to isocitrate in the TCA cycle. As a
result, fructose can act as a metabolic switch favoring more rapid
energy generation from glycolysis compared to energy generated
by mitochondrial respiration despite the availability of oxygen.
Similar to theWarburg effect in cancer growth, activated glycolysis
supplies several intermediates linking to subsequent metabolic
pathways, including pentose phosphate pathway, hexosamine
pathway, and lipid synthesis, and these biosynthetic precursors
contribute to the inflammatory reaction (17).
MECHANISMS BY WHICH FRUCTOSE
STIMULATES KIDNEY INFLAMMATION

In the kidney, dietary fructose is completely filtered through
glomerulus, and reabsorbed in the proximal tubular epithelial
cells through fructose transporters expressed in the apical
membrane. The fructose is physiologically utilized in the
cytosol as a substrate for gluconeogenesis to maintain systemic
glucose concentration (18). The kidney is capable of producing
fructose endogenously to cope with several pathological
conditions. For example, ischemia, high glucose, and high
osmolarity, all of which are key components of CKD, stimulate
aldose reductase and activates the polyol pathway (Figure 2).

Excessive amount of dietary fructose is deleterious in the kidney.
In fact, normal rats develop mild tubulointerstitial inflammation
and fibrosis on high fructose diet. The tubular epithelial vimentin
expression, collagen III deposition, and immune cell infiltration
were induced by dietary fructose in rodents (15, 20). In the pre-
existing kidney injury, fructose accelerates the progression of renal
injuries with prominent inflammatory changes in both glomeruli
and tubulointerstitium (14). Cultured proximal tubular cells were
found to release inflammatory cytokines, including monocyte
chemoattractant protein-1 (MCP-1) in response to fructose, a
metabolic response mediated by uric acid (21).

The inflammatory response to fructose is induced not only by
dietary fructose but also by the endogenous production of
fructose in the tubular epithelial cells. In fact, mouse studies
demonstrated that diabetes or hypoxia render the renal tubular
epithelial cells to release several inflammatory cytokines,
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including NFkB activation, IL6 and CCL2 expressions, all of
which were blunted in fructokinase-deficient mice (5, 6).

Endothelial cells are also stimulated to release intercellular
adhesion molecule-1 (ICAM-1) in response to fructose (22). A
likelymechanism is an ability of fructose to reduce nitric oxide (NO)
availability in the endothelial cells as NO donors mitigated the
fructose-induced ICAM-1 expression. This effect was shown to be
due to the uncoupling of the endothelial NO synthase (eNOS)
resulting from fructose-induced oxidative stress (23–25). Fructose-
induced generation of uric acid could be also involved in this process
as uric acid directly impairs endothelial function (16, 26, 27).
CKD IS ASSOCIATED WITH WORSENING
RENAL HYPOXIA

Under normal physiological conditions, the kidney medulla is
under a low oxygen condition with the partial oxygen pressure in
Frontiers in Immunology | www.frontiersin.org 3
the range of 10 to 20 mmHg, contrasting with that in the cortex
which is about 50 mmHg (28). Physiological hypoxia largely
depends on high demand of oxygen by renal tubular cells to
maintain electrolyte transport. Oxygen supply is also constrained
in this area because the vascular system is operated with a
countercurrent system, in which oxygen diffuses from arterial
to venous vasa recta and leaves the outer medulla deficient in
oxygen (28). Under pathological conditions, a low oxygen level is
further accelerated. For example, the loss of glomerular
capillaries in glomerular sclerosis decreases the blood flow to
the distal peritubular capillaries with further reduction in oxygen
supply. Similarly, CKD-associated anemia can lower oxygen
supply, while constriction of the efferent arteriole by intrarenal
activation of the renin angiotensin aldosterone system reduces
blood flow to tubulointerstitial area with similar effects on
oxygen delivery (28). Since these are likely shared mechanisms
in the progression of kidney diseases, hypoxia is considered as
unifying pathway toward end-stage kidney disease (28, 29).
FIGURE 1 | Fructose metabolism resembles the Warburg effect. Several pathological conditions stimulate aldose reductase, which converts glucose into fructose in
the kidney. Fructose either from diet or from endogenous system under pathological condition is converted by fructokinase into Fructose 1-phosphate, which
channels into glycolytic pathway. In turn, fructose metabolism results in uric acid production as a by-product, which suppress TCA cycle by inhibiting aconitase.
ECM, extra cellular matrix.
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The kidneys are physiologically equipped with compensatory
responses to hypoxia. Protection systems include the activation
of hypoxia-induced factor-1a (HIF-1a), which is capable of
stimulating the expression of erythropoietin for increasing
erythrocytes, and the induction of vascular endothelial growth
factor (VEGF) for inducing angiogenesis (30), both of which help
Frontiers in Immunology | www.frontiersin.org 4
deliver oxygen to hypoxic peripheral tissues. However, these
compensatory reactions could turn to be deleterious under
several pathological conditions. In particular, HIF could turn
to be profibrotic under sustained hypoxia in CKD (31). The
mechanism is likely involved in the ability of HIF to favor
glycolysis over mitochondrial respiration, and to induce the
FIGURE 2 | Fructose induces renal inflammation. Fructose either from diet or from endogenous system under pathological condition acts on the tubular epithelial
cells, endothelial cells, macrophages and fibroblasts to cause the Warburg effect, leading to inflammation and fibrosis in the kidney. AR, aldose reductase; ICAM-1,
intercellular adhesion molecule-1; eNOS, endothelial NO synthase.
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production of endogenous fructose (32, 33). Nevertheless, in the
setting of chronic hypoxia, it is likely that mitochondrial function
may be progressively reduced, so that a switch for glycolysis
is needed.
THE WARBURG EFFECT IS INVOLVED
IN CKD

The mitochondria has long been recognized as a site of increased
oxidative stress in diabetes, and aberrant activation of
mitochondria could also play a key role in diabetic
complications (34–36), although there remains some
controversy (37). However, recent evidence has shown that
mitochondrial function is rather suppressed in diabetes, and
restoration of normal mitochondrial health improves renal,
cardiovascular, and neuronal outcomes (38–42). Consistently
with these findings, experimental studies have shown that
glycolytic intermediates and enzymes are upregulated in the
kidney cortex in type 2 diabetes (42). Similarly, metabolites in
mitochondrial citrate cycle were significantly reduced in patients
with diabetic nephropathy compared to healthy controls (43).
These data suggest that activated glycolysis is dominant over
mitochondrial function and plays a pathological role in
diabetic nephropathy.

There is also evidence that there may be a shift from oxidative
stress to glycolysis in other types of CKD. One example is
Autosomal dominant polycystic kidney disease (ADPKD),
which is caused by loss-of-function mutations in either PDK1
or PKD2 (44). Rowe et al. found that cultured mouse embryonic
fibroblasts (MEFs) derived from the Pkd-/- mice preferentially
utilized higher amount of glucose, but excreted higher amount of
lactate into culture medium than cells from wild type mice (45).
In addition, Pkd-/- MEFs produced higher ATP content, which
were associated with the upregulation of glycolysis enzymes and
had only a minor effect by oligomycin, an inhibitor of
mitochondrial ATP synthesis, suggesting that ATP is produced
by glycolysis, but not by mitochondrial respiration. Likewise, the
mouse lacking Pkd in the renal tubules, as a mouse model for
ADPKD, exhibited glycolysis activation while blocking glycolysis
with 2DG, a glucose analog, succeeded to attenuate tubular cell
proliferation, leading to the reductions in kidney size and cyst
formation (45, 46).

A shift to glycolysis has also been observed in a model of
unilateral ureteral obstruction and in a TGF-b1-treated renal
fibrosis model. Specifically, Ding et al. found that myofibroblast
activation in the kidneys was associated with enhanced glucose
uptake and lactate production in the kidneys that could be
attenuated by blocking glycolysis by 2-Deoxy glucose
treatment. It was then shown that this represented a TGF-
b1-dependent metabolic switch favoring glycolysis over
mitochondrial respiration. These data suggest that the
Warburg effect could play a key role in the process of renal
fibrosis (47).
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FRUCTOSE AS A MECHANISM FOR
INDUCING THE WARBURG EFFECT
IN CKD

The observation that CKD is associated with worsening
intrarenal ischemia and hypoxia could have major effects on
intra-renal metabolism. As we mentioned, hypoxia-associated
HIF-1a stimulates endogenous fructose production and
metabolism. Park et al. studied the role of fructose with the
naked mole rats, which can survive longer time under hypoxic
condition, and found that a mechanism for the tolerance to
hypoxia is attributed to their capability to endogenously produce
fructose (32). Fructose can be metabolized even under a low
oxygen condition while it can provide several biosynthetic
intermediates through several pathways to meet the demand
for cell protection (as discussed in above section).

However, while fructose was likely meant to be protective in
the setting of ischemia, under pathological conditions fructose
may have deleterious consequences. Mirtschink et al. found that
fructokinase was upregulated under a low oxygen condition as a
HIF target gene, but it contributed to the development of the
hypertrophic heart in mice while cardiac hypertrophy was
blocked in fructokinase deficient mice (33). In the kidneys,
endogenous fructose could be deleterious in several
pathological conditions. Andres-Hernando et al. showed that a
transient ischemia was capable of inducing endogenous fructose
in the renal tubules, and again it was found to be deleterious as
blocking fructose metabolism ameliorates the kidney injury in an
ischemia-reperfusion mouse model (5).

Another setting where endogenous fructose production in the
kidney is high is in diabetic nephropathy. In diabetic
nephropathy there is not only intrarenal ischemia and hypoxia,
but high trafficking of glucose in the proximal tubules. The local
elevations in glucose are another major stimulus for fructose
production. As fructokinase is present in proximal tubules (S1 to
S3), it is likely that endogenous fructose production is high (7).
Indeed, blocking fructokinase was found to be protective in
experimental diabetic nephropathy (6).

The proximal tubular cells normally prefer lipids over
glucose for energy production, so glycolysis has not been
operated in this cell type. It would be accounted for by
unbalance of enzymatic activations for glycolysis over those
for gluconeogenesis (18). Since the proximal tubular cells are
the major site of fructose metabolism in the kidney as this is
where fructokinase is predominantly expressed, fructose
metabolism physiologically links with gluconeogenesis, but
not with glycolysis (18). However, this is not the case for
damaged tubules. In fact, the damaged proximal tubular
cells are often associated with mitochondrial alteration,
leading to metabolic switch from mitochondrial oxidative
phosphorylation to glycolysis with the amplified expression
of glycolytic enzymes (48). Importantly, when fructose is
metabolized with glucose, glucokinase activity is enhanced
(49–52).
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COULD THE BENEFICIAL EFFECTS OF
SGLT2 INHIBITORS IN DIABETIC AND
NON-DIABETIC CKD BE DUE TO
PREVENTION OF METABOLIC SWITCH
TOWARDS GLYCOLYSIS?

SGLT2 inhibitors have recently received an attention from clinicians
and researchers for their major therapeutic benefits that extend
beyond its glycemic control in both non-diabetic and diabetic
kidney diseases and in the cardiovascular complications associated
to CKD (53, 54). While the precise mechanisms remain unclear,
recent studies have indicated that the protective effects might be
accounted for by the prevention of the metabolic switch form lipid
oxidation to glycolysis as aberrant glycolysis was likely associated
with epithelial-to-mesenchymal transformation of proximal tubule
cells in diabetic nephropathy (55, 56). In addition, SGLT2 inhibitors
may reduce intra-renal work by blocking glucose uptake, and
thereby reducing intra-renal hypoxia with the blocking of HIF-1a
accumulation, and with the preventing a reduction of klotho, events
that are expected to reduce glycolysis (57, 58). An additional
protective effect exerted by SGLT2 inhibition is to chronically
shift the fuel utilization toward fatty substrates to induce a
significant increment in lipolysis and ketogenesis (59). The
increase in ketone content also suggests an increase in b-
oxidation and a reduction in the rate of glycolysis (60), which
may explain both cardioprotective and nephroprotective effects
(61). The stimulation of AMPK and sirtuin-1 is likely another
mechanism for the protective effect of SGLT2 inhibitors (62).

One of the main actions of SGLT2 inhibitors is to block
absorption of glucose into the S1 and S2 segments of the
proximal tubule, and this should act to reduce the amount of
glucose converted to fructose. Since some fructokinase is expressed
at the site (15), this could represent a way to block the Warburg
effect. Consistent with this suggestion, blocking fructokinase reduces
the severity of diabetic nephropathy in mice (6, 7). However, we
have previously suggested that the blocking of glucose uptake into
the S1 and S2 segments of the proximal tubule might increase the
amount of glucose reabsorbed by the S3 segment, which could lead
to sufficient fructose generation that its metabolism by fructokinase
could result in tubular injury and acute kidney injury (63). In the
overall balance, however, the use of SGLT2 inhibitors would be
expected to be protective for the kidney.
CONTROVERSIAL ROLE FOR
GLYCOLYSIS VS. OXIDATIVE
METABOLISM IN MACROPHAGE
ACTIVATION

Macrophages are involved in fructose-induced renal inflammation
(14, 15, 22). Two major macrophage phenotypes exist: a pro-
inflammatory (M1) phenotype that relies on glycolysis and an
anti-inflammatory/pro-resolving (M2) phenotype that depends on
oxidative phosphorylation (64, 65). Since macrophages express
Glut5 on their surface (66), and fructose stimulates macrophages
Frontiers in Immunology | www.frontiersin.org 6
to release pro-inflammatory cytokines (67, 68), fructose may be an
ideal fuel for the M1 macrophage due to its ability to stimulate
glycolysis. Although several studies indicate that mitochondrial
respiratory chain is also active in inflammatory M1 macrophages,
it may function to produce reactive oxygen species to kill infectious
bacteria as opposed to stimulate ATP synthesis (69).

In contrast, a recent study demonstrated that oxidative
metabolism, but not glycolysis, plays a dominant role of
macrophage activation in fructose-induced inflammation since
blocking oxidative phosphorylation, but not inhibition of
glycolysis, suppressed the release of pro-inflammatory
cytokines (67). A key finding was that fructose stimulates
glutamine uptake to activate TCA cycle, leading to mTORC1
activation for the release of inflammatory cytokines in human
monocytes and mouse macrophages. While fructose metabolism
inhibits aconitase, and therefore suppresses TCA cycle,
glutamine metabolism supplies a-ketoglutarate that can bypass
this step allowing oxidative phosphorylation to occur (70, 71).

Given these facts, macrophages likely utilize either glycolysis
or oxidative phosphorylation for their activation, and the precise
mechanism as to how macrophages select metabolic pathways
remains unclear. A potential explanation is that oxygen
availability is a determinant as the activity of cytochrome c
oxidase activity decreases when the oxygen concentration drops
below 1.0mM (72). Likewise, Semba et al. also recently examined
the role of oxygen in macrophage migration and showed that in
severe hypoxia, glycolysis is dominant while cytochrome c
oxidase activity is severely blocked (73). In turn, cytochrome c
activity turns on with oxygen availability, and glycolysis is
completely replaced for oxidative phosphorylation under
aerobic condition.

Taken together, these studies suggest that macrophages depend
on both glycolysis or oxidative phosphorylation for their activation,
and the selection of metabolic pathways may partially depend on
the oxygen availability. It is likely that glycolysis drives M1
macrophage activation under hypoxic condition, whereas
oxidative phosphorylation is used under aerobic conditions (73).
These studies suggest that fructosemetabolism could also be affected
by oxygen availability, so that the activation of metabolic pathway in
macrophage might be determined by both the fructose
concentration and oxygen levels.
CONCLUSIONS

Our studies suggest fructose may play a role in CKD. This could
occur secondary to excessive intake of dietary fructose from the
diet. However, it might be also a consequence of endogenous
fructose production driven by intrarenal ischemia or increased
glucose trafficking. Finally, the suppression of these pathways
may explain the protective effect of SGLT2 inhibitors in both
diabetic and non-diabetic CKD.
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