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Abstract: To determine the cause of negative fetal outcomes and the causative mechanism in a
frontal collision, we analyzed the kinematics and mechanisms of injuries using an unbelted pregnant
dummy, the Maternal Anthropometric Measurement Apparatus dummy, version 2B. Sled tests were
performed to recreate frontal impact situations with impact speeds of 13, 26, and 40 km/h. Overall
kinematics of the dummy were examined through high-speed video imaging. Quantitative dummy
responses—such as time courses of the abdominal pressure, chest deflection, neck injury criteria
(Nij), and displacement of the pelvis during impact—were also measured. The maximum abdominal
pressure of 103.3 kPa was obtained at an impact speed of 13 km/h. The maximum chest deflection of
38.5 mm and Nij of 0.36 were obtained at an impact speed of 26 km/h. The highest maximum chest
deflection of >40.9 mm, Nij of 0.61, and forward pelvis displacement of 478 mm were obtained at an
impact speed of 40 km/h. Although the kinematics and mechanism of injuries of the dummy were
different for different collision speeds, we found that unbelted pregnant drivers suffer severe or fatal
injuries to the fetus even in low-speed collisions.

Keywords: pregnant women; frontal motor vehicle collisions; negative fetal outcome

1. Introduction

Road traffic injury is a major public issue worldwide. According to the World Health
Organization, approximately 1.35 million people die each year as a result of road traffic
collisions in 2018 [1]. Pregnant women are also often involved in motor vehicle collisions
(MVCs), potentially leading to negative fetal outcomes. Klinich et al. reported that approxi-
mately 130,000 women in late-term pregnancy are involved in MVCs in the United States
annually, and the annual estimate of abortions or stillbirths ranges from 300 to 3800 [2].
Kvarnstrand et al. reported that the incidence rates of maternal and fetal deaths related to
MVCs were respectively 1.4 and 3.7 per 100,000 pregnancies in Sweden [3]. These reports
indicate a worldwide need to clarify the injury mechanisms of pregnant drivers and to
reduce the rates of fatalities of pregnant women and their fetuses.

The wearing of three-point seatbelts is effective in terms of reducing the fatality rate
and severity of motor vehicle injuries. Previous reports on actual MVCs cases found that
the wearing of a seatbelt by pregnant drivers reduces both the maternal injury severity and
fetal fatality rate, in contradistinction to not wearing a seatbelt [4,5]. The American College
of Obstetricians and Gynecologists therefore recommended wearing a seatbelt correctly
for reducing the risk of injury to both the mother and fetus [6]. From the biomechanical
viewpoint, positive effects of three-point seatbelts for pregnant women involved in frontal
and rear-end collisions were confirmed with an anthropometric model of a pregnant
woman [7,8]. The cited studies found that wearing a seatbelt reduced abdominal pressure
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or prevented contact with the steering wheel during a collision. However, a substantial
number of pregnant women are not willing to wear three-point seatbelts because of a
compressive feeling or discomfort. Acar et al. suggested that the rate of seatbelt use during
pregnancy in Europe, North America, and other countries was 94.8%, 92.2%, and 83.3%,
respectively [9]. In Malaysia, 57.6% of pregnant drivers always used a seatbelt [10]. Even
in countries such as the United States, where the wearing of seatbelts is legally required,
more than 20% of pregnant women do not wear seatbelts [5,11,12]. To prevent the negative
fetal outcomes, the cause of fetal death and mechanisms of fatal injuries when an unbelted
pregnant driver is involved in a frontal collision should be enlightened. However, to
the best of our knowledge, there have been no reports on the kinematics and affected
biomechanical parameters of unbelted pregnant vehicle passengers during a collision.

To determine the cause of the negative fetal outcome and causative mechanism in
a frontal collision involving an unbelted pregnant driver, we performed biomechanical
analyses using a dummy of a pregnant woman.

2. Materials and Methods
2.1. Dummy

The dummy used herein is the most current version of the Maternal Anthropometric
Measurement Apparatus, version 2B (MAMA-2B), developed by First Technology Safety
Systems and the University of Michigan Transportation Research Institute in 2001 [13–15].
This dummy is based on the Hybrid-III American Female fifth percentile (AF05) dummy
and is thus suitable for vehicle impact tests and for analysis of the kinematics of pregnant
women during MVCs. The pelvis, sternum, and ribcage are modified to accommodate a
silicone rubber bladder representing the uterus at 30 weeks of gestation. The size of the
dummy is based on an American woman in the fifth percentile; i.e., a small woman with a
height of 153 cm. This size is in accordance with a standard Japanese pregnant woman at
30 weeks of gestation [16].

2.2. Seating Position of the Dummy

The interior buck used in the present study was fabricated on the basis of the actual
vehicle body of the 2003 model of the Honda Accord. The dummy setting was identical in
all tests and determined according to the average sitting position as measured for pregnant
volunteers having a stature similar to AF05 [16,17]. A pre-test image of the seating position
of the dummy in the sled buck is shown in Figure 1. The seating position and posture
of the dummy were then fixed with a seat slide position of 70 mm from the full forward
position (50 mm forward from the middle position), and a recline of 8.0◦ from the most
upright position (a torso angle of 21◦ from the vertical line). The referential horizontal
distance from the lower rim of the steering wheel to the abdomen was 100 mm.

Figure 1. MAMA-2B AF05 ver. sitting in the test setup.



Healthcare 2021, 9, 25 3 of 9

2.3. Test Setup

The Instron Servo Sled Apparatus was used in testing. The seat, steering wheel,
and steering column installed in the test setup were the same as those for the vehicle in
which the seating positions for volunteers at approximately 30 weeks of gestation were
measured. In each test, the dummy was seated in the driver’s seat without a seatbelt. To
represent situations of a frontal collision while driving a passenger vehicle, quasi-trapezoid
waveforms measured in a flat-barrier test at the time of an impact speed of 13, 26, and 40
km/h were applied to the sled (respectively corresponding to tests 1, 2, and 3).

We used single-stage airbags. An airbag was not deployed in test 1 but deployed
in tests 2 and 3. The airbags were ignited in tests 2 and 3 at the time of the onset of
the acceleration of the sled buck. These conditions were the same as those in real-world
frontal collisions.

2.4. Measurements

The overall kinematics of the dummy, such as the trajectory during impact, were
examined adopting high-speed video imaging recording at 1000 frames per second. We
measured dummy responses, such as the accelerations and distances moved from initial
positions for the head, neck, chest, and pelvis. All data were recorded using a high-speed
data acquisition system that sampled at 20 kHz and the data were then filtered using a
Channel Class 1000 filter. We obtained the pressure on the anterior and posterior abdominal
bladder of the dummy (hereafter referred to as abdominal pressure) during impact, which
represents the intrauterine pressure for the pregnant women. We checked and calibrated
the pressure transducers prior to testing. Klinich et al. identified a correlation between
the peak anterior abdominal pressure and adverse fetal outcome from analyses of actual
cases [14]. Rupp et al. conducted a series of sled tests using the MAMA-2B dummy and
examined the correlation between abdominal pressure on the pregnant dummy and impact
speed during vehicle collisions [15]. On the basis of these references, we examined the
probability of a negative fetal outcome in each result. To measure deflections of the chest,
a system called the Infrared Telescoping Rod for Assessment of Chest Compression (IR-
TRACC) was used. This system was mounted inside of the right and left second ribs of
the dummy. In addition, from obtained data, we calculated the neck injury criterion (Nij),
which was developed for the quantitative evaluation of neck injuries and adopted in the
automobile collision safety evaluation test as a standard for indicating the degree of neck
injury [18,19]. This criterion is based on the correlation of data from dummy tests, cadaver
tests, and real-world injuries. Six-axis load cells were mounted at the top of the neck to
detect the load and moment around the Y-axis of the neck. This moment corresponded to
anterior–posterior movement of the head. The Nij criterion was calculated as Nij = (Fz /
Fint) + (My / Mint), where Fz represents the axial forces in the upper neck (either tension or
compression) and My represents the flexion/extension bending moment at the occipital
condyles. A positive Fz value indicates tension of the neck while a negative value indicates
compression of the neck. The My value indicates flexion of the neck, with a negative value
indicating extension of the neck. Fint and Mint are critical intercept values used for the
normalization of differently sized dummies.

3. Results
3.1. Kinematics of the Dummy

In test 1, the dummy moved forward and the abdomen first made contact with the
lower rim of the steering wheel at 56 ms from initiation of the impact. The airbag was not
deployed. The dummy further moved forward and the chest made slight contact with the
center of the steering wheel at 118 ms (Figure 2). Around this time, at 106 ms, the pelvis
reached the most forward position (152 mm) from the initial position (Figure 3). The face
then made contact with the upper rim of the steering wheel at 141 ms. Finally, the chest
of the dummy moved most forward from the initial position (251 mm) at 136 ms from
initiation of the impact.
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Figure 2. Instant at which the chest of the dummy made contact with the center of the steering wheel
in test 1.

Figure 3. Time courses of pelvis displacement in each test.

In test 2, the dummy moved forward and the head, chest, and abdomen made contact
with the airbag at 43 ms from initiation of the impact. The dummy further moved forward
and the chest made contact with the lower rim of the steering wheel at 65 ms from initiation
of the impact (Figure 4). Finally, the chest of the dummy moved most forward from the
initial position (292 mm) at 97 ms from initiation of the impact. Additionally, the pelvis
reached the most forward position from the initial position (298 mm) at 105 ms from
initiation of the impact (Figure 3).

Figure 4. Instant at which the chest of the dummy made contact with the lower rim of the steering
wheel in test 2.
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In test 3, the dummy moved forward and the head, chest, and upper part of the
abdomen made contact with the airbag at 35 ms from initiation of the impact. The dummy
further moved forward and the chest of the dummy made contact with the lower rim of
the steering wheel at 69 ms from initiation of the impact, and the pelvis of the dummy
subsequently slipped down the seat. Finally, the entire torso of the dummy slid under the
instrument panel (Figure 5), and the pelvis reached the most forward position from the
initial position (478 mm) at 147 ms from initiation of the impact (Figure 3). Additionally,
the chest of the dummy moved most forward from the initial position (383 mm) at 200 ms
from initiation of the impact.

Figure 5. Instant at which the entire dummy’s torso slid under the instrument panel in test 3.

3.2. Measured Parameters

Table 1 gives the maximum values of measured parameters. Figures 6 and 7 show
the time courses of abdominal pressure in each case. In test 1, the maximum abdominal
pressure rose to 103.3 kPa in the anterior at 118 ms and to 88.9 kPa in the posterior at 123 ms.
The probability of a negative fetal outcome was predicted as about 71% in test 1 and less
than 20% in tests 2 and 3. However, maximum values of Nij and chest deflection were low.
In test 2, the maximum values of chest deflection were 38.5 mm on the left and 37.9 mm on
the right. The value of Nij was 0.36; however, the values of maximum abdominal pressures
were lowest among the three tests. In test 3, the values of chest deflections were highest
among the three tests and exceeded the predetermined range (>40.9 mm). Additionally,
the value of Nij was highest among the three tests (0.61).

Figure 6. Time course of anterior abdominal pressure in each test.
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Figure 7. Time course of posterior abdominal pressure in each test.

Table 1. Maximum values of the neck injury criteria, chest deflections, and abdominal pressures
under each condition.

Test
Impact

Speed (km/h)
Neck Injury

Criteria
Chest Deflection Abdominal Pressure

Right Left Anterior Posterior

Value (Time) Value (Time) Value (Time) Value (Time) Value (Time)

Test 1 13 0.12 (102
ms)

1.9
mm

(160
ms)

2.7
mm

(148
ms)

103.3
kPa

(118
ms)

88.9
kPa

(123
ms)

Test 2 26 0.36 (100
ms)

37.9
mm

(119
ms)

38.5
mm

(120
ms)

28.3
kPa

(82
ms)

12.5
kPa

(165
ms)

Test 3 40 0.61 (80
ms)

>40.9
mm

(98
ms)

>40.9
mm

(99
ms)

58.6
kPa

(98
ms)

48.7
kPa

(102
ms)

4. Discussion

We found the cause of negative fetal outcome by analyzing the kinematics of a preg-
nant woman dummy. To precisely reconstruct a real-world collision involving a pregnant
driver, we performed sled tests with MAMA-2B AF05 ver., which has the stature of an
average Japanese pregnant women, with the actual seating position measured for Japanese
pregnant drivers [16] and with an interior back the same as an actual vehicle body. Our
results add novel findings to the work of Rupp. et al. [14].

In this study, the kinematics and mechanisms of injuries of the dummy were different
for different collision speeds. Higher impact speeds resulted in longer distances of forward
movement of the dummy. However, owing to the interaction between the trunk of the
dummy and the airbag or steering wheel, injured body regions were different among the
three conditions. In test 1, the dummy moved straightly forward and the abdomen made
direct contact with the steering wheel. Therefore, the abdominal pressures of the dummy
were markedly higher than those in tests 2 and 3. We considered that the fetal outcome
depends on the elevation of the abdominal pressure. From the results of the study, the
probability of a negative fetal outcome was predicted as about 71% in test 1 and <20% in
tests 2 and 3. Therefore, in test 1, the cause of the negative fetal outcome was a stronger
direct force acting on the uterus.

However, in tests 2 and 3 (with a higher impact speed of at least 26 km/h), because
the dummy’s abdomen did not make direct contact with the steering wheel, the predicted
probabilities of a negative fetal outcome based on peak abdominal pressures were <20%.
However, the chest deflection was markedly high because of the direct contact with the
steering wheel. The deflection of the sternum is used as injury criterion in current regulatory
and consumer tests worldwide to assess the risk of thoracic injury. According to vehicle
safety regulations, chest deflections of 2.7, 38.5, and >40.9 mm respectively represent 3.0%,
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19.0%, and >21% risks of injuries at an abbreviated injury scale (AIS) greater than 3 [20].
Furthermore, in accordance with a United Nations Regulation (UN-R137), the Japan New
Car Assessment Program defined the safety limit of the chest deflection of the AF05 dummy
as 34 mm, in a full-lap frontal collision test with a speed of 55 km/h [21]. We therefore
supposed that pregnant women would suffer severe chest injuries, such as multiple rib
fractures or lung lacerations, when involved in a frontal collision with an impact speed of
at least 26 km/h without a seatbelt. In addition, in test 3, the pelvic displacement of the
dummy was markedly higher than that in other tests and the pelvis of the dummy slipped
down the seat. We supposed that pregnant women would suffer severe pelvic injuries (i.e.,
pelvic fractures and pelvic viscera injuries) when involved in a frontal collision with an
impact speed of at least 40 km/h without wearing a seatbelt.

We also measured the neck moment of the dummy and calculated Nij [22]. In test 2,
because the head of the dummy made contact with the airbag, the neck was extended.
In test 3, as the dummy slipped down the seat, the neck was more extended than it was
in test 2. A higher Nij value was therefore obtained in test 3 than in test 2. According
to the National Highway Traffic Safety Administration, Nij values of 0.12, 0.36, and 0.61
respectively represent 5.0%, 7.0%, and 12.0% risks of injuries at an AIS exceeding 3 and
13.0%, 16.0%, and 21.0% risks of injuries at an AIS exceeding 2 [19]. We supposed that
pregnant women might also suffer severe neck injuries when involved in a frontal collision
with an impact speed of at least 40 km/h without a seatbelt.

We considered that the mechanism of injuries of the dummy was different at different
collision speeds. In test 1, with an impact speed of 13 km/h, the high abdominal pressure
of the dummy would lead to a negative fetal outcome. In test 2, with an impact speed of
26 km/h, the severe chest and/or neck injuries would contribute to the fatalities of both
the mother and fetus. In test 3, with an impact speed of 40 km/h, in addition to severe
chest and/or neck injuries, pelvic injury also contributes to both negative mother and
fetal outcomes. Therefore, in tests 2 and 3, although the abdominal pressures were not so
high, the negative fetal outcome would be due to the secondary effect of severe or fatal
maternal injuries. Therefore, depending on the speed, the cause of negative fetal outcomes
must be considered according to the kinematics of the pregnant drivers. Practically, when
an unbelted pregnant driver is involved in a frontal vehicle collision, fetal death can
occur without any injury to the pregnant women’s abdomen [23]. In these cases, the
present results contribute to the decision of forensic pathologists regarding the cause and
mechanisms of fetal death.

Because the average longitudinal distance between the steering wheel and the ab-
domen of a pregnant driver is approximately 100 mm shorter than that for non-pregnant
women, the pregnant dummy under each condition of the present study made contact with
the steering wheel [16]. The present results reveal that the fetus of the unbelted pregnant
driver can suffer fatal injuries even in a low-speed impact. The authors are concerned that a
substantial number of pregnant drivers worldwide are at risk of fetal loss because they are
not using a seatbelt [24]. Furthermore, Klinich suggested that about 192 fetal losses could
be prevented annually if all pregnant women use seatbelts properly in the United States [5].
Therefore, seatbelt use by pregnant women should be promoted for both maternal and fetal
safety. Our results emphasize the risk of frontal collision without seatbelts for pregnant
women and fetuses from a biomechanical viewpoint.

There are limitations to the present study. First, because the dummy used in this
study represented 30 weeks’ gestation, the study determined the cause of negative fetal
outcome around 30 weeks of gestation. Therefore, the result does not apply to all pregnant
drivers. However, the study found the effect of a protruded abdomen at each collision
speed, and the result might be accurate for late-term pregnant women in general. In future
work, our result should be confirmed by examining real-world collision cases involving
late-term pregnant drivers. Second, we used the peak value of abdominal pressure as the
index of negative fetal outcome in this study. We compared values to those in previous
reports on drivers in vehicle collisions, and the peak values of the abdominal pressure were
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thus examined. As different types of force may act on vehicle passengers, other indices
of abdominal pressure well correlating to negative fetal outcome could be considered.
Third, an interior buck representing a single sedan-type vehicle was used in this study. The
geometry of the driver’s seat has no appreciable difference among sedans regardless of the
original equipment manufacturer or class of car. However, we understand that sport utility
vehicles have a different geometry from sedans, with more upright sitting positions and
steering columns, resulting in different outcomes.

5. Conclusions

We found the cause of negative fetal outcome by analyzing the kinematics of a preg-
nant woman dummy. To reconstruct a real-world collision involving a pregnant driver
precisely, we performed sled tests with MAMA-2B AF05 ver., which has the stature of the
average Japanese pregnant woman, and an interior back the same as the actual vehicle
body. Mechanisms of negative fetal outcome were confirmed at different speed of frontal
vehicle collisions according to sled tests with a pregnant dummy (MAMA-2B AF05 ver.).
At an impact speed of 13 km/h, the high abdominal pressure of the dummy would lead to
a negative fetal outcome. Although the abdominal pressures were not so high at a higher
impact speed of at least 26 km/h, there would be a negative fetal outcome owing to the
secondary effect of severe or fatal maternal injuries. At an impact speed of 26 km/h, severe
chest and/or neck injuries would contribute to the fatalities of both the mother and fetus.
At an impact speed of 40 km/h, in addition to severe chest and/or neck injuries, pelvic
injury also contributes to both negative mother and fetal outcomes. Results suggested that
unbelted pregnant drivers suffer severe or fatal injuries to the fetus even in low-speed
collisions. These results clarified the detail risk of both fetal and pregnant women’s deaths.
Also, this study may contribute to changes in awareness of pregnant vehicle passengers for
improving the seatbelt use rate.
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