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Abstract 31 

Background: Brain amyloid-b (Ab) peptide  is released into the interstitial fluid (ISF) in a neuronal 32 

activity-dependent manner, and Ab deposition in Alzheimer’s disease (AD) is linked to baseline 33 

neuronal activity. Although the intrinsic mechanism for Ab generation remains to be elucidated, 34 

interleukin-like epithelial-mesenchymal transition inducer (ILEI) is a candidate for an endogenous Ab 35 

suppressor. 36 

Objective: This study aimed to access the mechanism underlying ILEI secretion and its effect on Ab 37 

production in the brain. 38 

Methods: ILEI and Ab levels in the cerebral cortex were monitored using a newly developed ILEI-39 

specific ELISA and in vivo microdialysis in mutant human Ab precursor protein-knockin mice. ILEI 40 

levels in autopsied brains and cerebrospinal fluid (CSF) were measured using ELISA. 41 

Results: Extracellular release of ILEI and Aβ was dependent on neuronal activation and specifically on 42 

tetanus toxin-sensitive exocytosis of synaptic vesicles. However, simultaneous monitoring of 43 

extracellular ILEI and Aβ revealed that a spontaneous fluctuation of ILEI levels appeared to inversely 44 

mirror that of Aβ levels. Selective activation and inhibition of synaptic receptors differentially altered 45 

these levels. The evoked activation of AMPA-type receptors resulted in opposing changes to ILEI and 46 

Aβ levels. Brain ILEI levels were selectively decreased in AD. CSF ILEI concentration correlated with 47 

that of Aβ, and were reduced in AD and mild cognitive impairment. 48 
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Conclusion: ILEI and Aβ are released from distinct subpopulations of synaptic terminals in an activity-49 

dependent manner, and ILEI negatively regulates Ab production in specific synapse types. CSF ILEI 50 

might represent a surrogate marker for the accumulation of brain Ab. 51 

 52 

Keywords: Alzheimer's disease, Aβ, ILEI, Synapse, Neurotransmitter receptor 53 
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INTRODUCTION 55 

      Family with sequence similarity 3, member C (FAM3C) is a ubiquitously expressed, multi-56 

functional secretory protein. It is upregulated by transforming growth factor b signaling and causes 57 

epithelial-mesenchymal transition of epithelial cells and hepatocytes; thus, FAM3C has also been named 58 

interleukin-like epithelial-mesenchymal transition inducer (ILEI) [1-5]. Other emerging functions of 59 

FAM3C/ILEI include inhibition of osteoblast differentiation and mineralization through Runx2 60 

downregulation in the bone marrow [6, 7], and gluconeogenesis suppression via induction of heat shock 61 

factor 1, and activation of the phosphoinositide 3-kinase and Akt pathway in the liver [8, 9]. 62 

      In previous studies, we found that extracellularly released ILEI interacts with the g-secretase 63 

complex to suppress production of amyloid-b (Ab) peptides [10]. Ab  is generated through b- and g-64 

secretase-mediated proteolytic processing of Ab precursor protein (AbPP) and is released into the 65 

interstitial fluid (ISF) of brain parenchyma in a neuronal activity-dependent manner [11, 12]. Excessive 66 

accumulation of aggregated Ab in the cerebral cortex and hippocampus is considered to initiate the 67 

pathogenic cascade of Alzheimer’s disease (AD). Recent imaging studies revealed that Ab deposition in 68 

the brain is tightly linked to baseline neuronal activity, and that component regions of the default mode 69 

network are the sites most vulnerable to Ab deposition [13, 14]. ILEI reduces Ab production by 70 

facilitating lysosome/proteasome-mediated turnover of the C-terminal fragments of AbPP while sparing 71 

g-secretase activity. During AD pathogenesis, the expression of ILEI is significantly reduced in the brain 72 

and inversely correlated with accumulated Ab levels [10, 15]. These findings suggest that reduced 73 
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expression of brain ILEI is an antecedent event that prompts the inevitable Ab pathology observed in 74 

AD. 75 

      We previously reported that ILEI colocalizes with AbPP and g-secretase complex components 76 

at the presynaptic terminals [15]. However, two questions remain unanswered: (1) how is ILEI released 77 

into the ISF and (2) is there a relationship between extracellularly released ILEI and Ab levels? In this 78 

study, we developed a sandwich ELISA for ILEI that enabled quantitative analysis of expression and 79 

secretion of ILEI in the mouse brain. Using in vivo microdialysis, we found that ILEI was released into 80 

the ISF in a neuronal activity-dependent manner, much like Ab. Moreover, activation or inhibition of 81 

specific neurotransmitter receptors led to distinct changes in the extracellular levels of ILEI and Ab in 82 

the cerebral cortex. 83 

 84 

MATERIALS AND METHODS 85 

Preparation of monoclonal antibodies against ILEI 86 

To generate monoclonal antibodies against ILEI protein, two BDF1 mice were immunized with a 87 

recombinant His-tagged, secreted form of human ILEI (25-227 amino acid residues, #ATGP1251, 88 

ATGen Co. Ltd., Gyeonggi-do, Korea). After preparation of the lymph nodes and spleens, cells were 89 

fused with the myeloma cell line P3-X63-Ag8. The hybridoma supernatants of mixed clones were 90 

screened by ELISA. Among 95 clones that recognized the immunogen, three monoclonal antibody 91 

clones showed the highest immunoreactivity after the second round of subcloning by limiting dilution. 92 
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Finally, two clones, namely 24C1 and 42C1, were selected by ELISA against recombinant mouse ILEI 93 

(R&D Systems Inc., Minneapolis, MN, Cat# 2868-FM). Both monoclonal antibodies were purified by 94 

protein A affinity chromatography from 1 L of each hybridoma cell culture supernatant. In addition, the 95 

antibody mAb24C1 was conjugated to horseradish peroxidase according to the manufacturer’s 96 

instructions (Dojindo, Kumamoto, Japan, Cat# LK11).  97 

 98 

Development of a sandwich ELISA for ILEI 99 

First, 96-well flat-bottom ELISA plates (Nunc, Thermo Fisher Scientific, Rochester, NY, Cat# 469914) 100 

were coated with mAb42C1 (144 ng/well in 100 μL/well of 0.2 M sodium carbonate–bicarbonate buffer, 101 

pH 9.4). The plates were incubated at 4°C overnight and then washed three times with 300 μL/well of 102 

PBS (pH 7.2) with 0.1% Tween 20. Nonspecific binding sites were blocked by incubation with a 103 

blocking reagent (IS-CD-500E; Cosmo Bio. Co, Ltd., Tokyo, Japan, Cat# IS-CD-500E) for 1 h at 37°C. 104 

    The standards were prepared with a solution of recombinant mouse ILEI (2868-FM; R&D 105 

system, Inc., Cat# 2868-FM) or human ILEI (15678-H08H-50, Sino Biological Inc., Beijing, China, 106 

Cat# 15678-H08H-50) in a dilution buffer (Immuno-Biological Laboratories Co, Ltd., Gunma, Japan, 107 

Cat# 27769D100). Standards of 0.313, 0.625, 1.25, 2.5, 5.0, and 10.0 ng/mL were prepared immediately 108 

before loading. Unknown samples were prepared in an appropriate dilution with dilution buffer. Wells 109 

were each loaded with 100 μL of the designated solution. The plates were subsequently incubated for 18 110 

h at 4°C without shaking before being washed five times. 111 
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    The plates were then incubated with the detection antibody solution, which contained 112 

horseradish-peroxidase-conjugated antibody mAb24C1 at 50 ng/well in 100 μL/well of a dilution buffer 113 

(Immuno Shot 2; Cosmo Bio, Cat# IS-002) for 1 h at 4°C. They were then washed five times, incubated 114 

for another hour at room temperature, and again washed five times. Subsequently, the plates were 115 

developed for 30 min with 100 μL/well of a 3,3’,5,5’-tetramethylbenzidine dihydrochloride substrate 116 

solution (ImmunoPure Turbo TMB; Pierce Chemical Co., Rockford, IL, Cat# 5120). The reaction was 117 

stopped by adding 100 μL/well of 1 M sulfuric acid (Nacalai Tesque, Kyoto, Japan, Cat# 95626-06). 118 

Finally, the plates were read at a wavelength of 450 nm (Benchmark Plus; Bio-Rad Laboratories Inc., 119 

Hercules, CA, USA). 120 

 121 

Immunoblotting 122 

ILEI-knockout HEK293 cells [15] were transfected with expression plasmids using linear 123 

polyethylenimine (Polysciences Inc., Warrington, PA, Cat# 23966). Cell lysates were sonicated on ice 124 

and centrifuged at 4°C and 15,000 rpm for 25 min. Per lane, 15–20 μg of proteins were separated by 125 

12% SDS-PAGE and transferred to a polyvinylidene fluoride membrane (Merck Millipore, Co., 126 

Billerica, MA, Cat# IPVH00010). These membranes were incubated with the primary antibodies at 4°C 127 

overnight before being washed and incubated with corresponding horseradish peroxidase-conjugated 128 

secondary antibodies (1:5,000, Merck Millipore, Cat# AP308P) for 1 h. This process was followed by 129 

enhanced chemiluminescence detection (Nacalai Tesque, Cat# 07880-70). Blots were scanned using a 130 
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LAS-4000 imaging system (Fujifilm, Tokyo, Japan). The primary antibodies used were as follows: 131 

mAb42C1 (1:2,000), mAb24C1 (1:2,000), anti-GAPDH antibody (1:2,000, Merck Millipore, Cat# 132 

MAB2549), and anti-V5 antibody (1:2,000, Nacalai Tesque, Cat# 04434-94).  133 

 134 

Animals 135 

Four month-old male C57BL/6J mice (CLEA Japan, Inc., Tokyo, Japan) and humanized mutant AbPP-136 

knockin mice (AppNL-G-F mice [16]) were used in this study. Mice were maintained at room temperature 137 

(25°C) under a standard 12:12 h light:dark cycle, with food and water available ad libitum. AppNL-G-F 138 

mice were intraperitoneally injected with a mixture of anesthetics (Domitor, ZENOAQ, Fukushima, 139 

Japan; Vetorphale, Meiji Seika Pharma Co., Ltd., Tokyo, Japan; midazolam, Sando Co., Ltd., Tokyo, 140 

Japan) and then with an anti-anesthetic (Antisedan, ZENOAQ, Fukushima, Japan). Tetanus toxin (Sigma, 141 

St. Louis, MO, Cat# T3194) was also intraperitoneally administered. All experimental procedures were 142 

approved by the Institutional Animal Care and Use Committee of the Shiga University of Medical 143 

Science (Approval ID: 2018-12-1), and experiments were performed according to the Guide for the Care 144 

and Use of Laboratory Animals. 145 

 146 

Measurement of ILEI and Ab in the mouse brain 147 

Mice were euthanized by cervical dislocation, and whole brains and cerebrospinal fluid (CSF) were 148 

obtained. Whole forebrains were homogenized using a motor-driven Teflon/glass homogenizer (10 149 
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strokes) in four volumes of Tris-buffered saline (50 mM Tris, pH 7.6, 150 mM NaCl, and 0.5 mM 150 

EDTA) that contained a protease inhibitor cocktail. The homogenates were then centrifuged at 100,000 151 

g for 20 min on a TLA 100.4 rotor in a TLX ultracentrifuge (Beckman, Palo Alto, CA, USA). The 152 

supernatants were taken as the soluble fractions and subjected to a protein assay (BioRad, Cat# 500-153 

0116JA) and sandwich ELISAs specific for ILEI, mouse/rat Ab40 (Immuno-Biological Laboratories, 154 

Cat# 27720), or human total Ab (Immuno-Biological Laboratories, Cat# 27729). Brain lysates were 155 

obtained by adding NP40 and CHAPSO to homogenates at 1% of each final concentration.  156 

 157 

In vivo microdialysis 158 

Microdialysis was performed as previously described by Takeda et al. [17]. Briefly, guide cannulas (8 159 

mm in length) were stereotactically implanted into the right cerebral cortex (bregma 1.9 mm, 0.5 mm 160 

lateral to the midline, and 0.8 mm ventral to skull surface) of anesthetized mice, and then bonded in place 161 

with dental cement. Accordingly, the inserted dialysis probe was located in the medial prefrontal cortex 162 

spanning the anterior cingulate, prelimbic, and infralimbic areas, which are AD-vulnerable regions. At 163 

least two days after guide cannula implantation, a microdialysis probe with a 2 mm-long polyethylene 164 

membrane (1,000 kDa molecular weight cutoff, PEP-4-02, Eicom, Kyoto, Japan, Cat# 600132) was 165 

inserted through the guide, and the mouse was placed in a transparent acrylic cage (250 × 250 × 350 166 

(height) mm). The probe was connected to peristaltic and microsyringe pumps with fluorinated ethylene 167 

propylene tubing (250 μm in diameter): the syringe pump pushed and the peristaltic pump pulled a 168 
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dialysis buffer (119 mM NaCl, 2.5 mM KCl, 2.5 mM CaCl2, and 0.15% bovine serum albumin; filtered 169 

through a 0.22-μm-pore-sized membrane) at a synchronous flow rate. After preperfusion with a dialysis 170 

buffer at a flow rate of 10 μL/min for 2 h, dialyzed samples were collected into polypropylene tubes 171 

every 1 or 2 h using a fraction collector (EFC-96, Eicom). During sampling, flow rate was kept constant 172 

at 0.5 μL/min. Sampling began at 16:00, and the mice were allowed to move freely in the cage while 173 

sampling occurred. The concentrations of ILEI and Ab were measured using the ELISAs described 174 

above. Basal levels of ILEI or Ab were defined as the mean concentration from four samples obtained 175 

before reverse dialysis. All values for each mouse were then normalized as percentages of the basal level 176 

for each point. 177 

 178 

Assessment of mouse locomotor activity 179 

To assess mouse locomotor activity during microdialysis, we used the Scanet MV-40 system (Melquest, 180 

Toyama, Japan). Vertical and horizontal movements of mice were tracked and measured every 60 min 181 

for 2 days using digital counters with infrared sensors, which were crosswise distributed at 6-mm 182 

intervals and a height of 30 mm above the floor of a transparent acrylic cage (250 × 250 mm). The 183 

moving distances of mice every hour were expressed in arbitrary units.  184 

 185 

Reverse microdialysis 186 
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The following compounds were used for reverse microdialysis: tetrodotoxin (Fujifilm Wako, Tokyo, 187 

Japan, Cat# 206-11071), AMPA (Abcam, Cambridge, UK, Cat# ab12005), NBQX disodium salt 188 

(Abcam, Cat# ab144489), NMDA (Nacalai Tesque, Cat# 22034-16), D-AP5 (Abcam, Cat# ab120003), 189 

diazepam (Fujifilm Wako, Cat# 045-18901), picrotoxin (Sigma Chemicals, Cat# P1675), (R, S)-190 

Baclofen (Abcam, Cat# ab120149), CGP55845 hydrochloride (Sigma Chemicals, Cat# SML0594), 191 

nicotine (Nacalai Tesque, Cat# 24332-62), D-tubocurarine chloride (Nacalai Tesque, Cat# 35637-84), 192 

pilocarpine hydrochloride (Nacalai Tesque, Cat# 28008-31), and atropine sulfate (Nacalai Tesque, Cat# 193 

03533-11). For reverse microdialysis, compounds were diluted at the indicated concentration in Ringer’s 194 

solution. 195 

 196 

Autopsied human brain tissues 197 

Frozen brain tissues from the temporal cortex of 15 deceased patients with AD, 15 age-matched non-198 

neurological disease control subjects, and 10 non-AD neurological disease control subjects were 199 

obtained from the Brain Bank for Aging Research, Tokyo Metropolitan Institute of Gerontology (Tokyo, 200 

Japan). All study subjects or their next of kin provided written informed consent for brain donation, and 201 

experimental procedures were approved by the Shiga University of Medical Science Review Board 202 

(Approval ID: 28-096). All patients with AD fulfilled the National Institute of Neurological and 203 

Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Associations criteria 204 
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for probable AD. Soluble fractions of temporal cortex homogenates were prepared as previously 205 

described (10). 206 

 207 

Clinical CSF samples 208 

CSF was analyzed in control subjects (mean age 76.88 years, n = 25), MCI subjects (mean age 71.24 209 

years, n = 25), and patients with AD (mean age 75.84 years, n = 25). Written informed consent was 210 

obtained from each participant before lumbar puncture for CSF collection. CSF analysis was approved 211 

by the Ethics Committees of Niigata University (Approval ID: 2015-2427). CSF concentrations of Aβ38, 212 

Aβ40, and Aβ42 were analyzed using V-PLEX Aβ Peptide Panel 1 (6E10) (Meso Scale Discovery, 213 

Rockville, MD) with MESO QuickPlex SQ 120 (Meso Scale Diagnostics). Intra- and interassay 214 

coefficients of variation were <20% for all assays. The ILEI measurement of CSF samples was approved 215 

by the Ethics Committees of Shiga University of Medical Science (Approval ID: 27-210). 216 

 217 

Statistical analysis 218 

Statistical analyses involved two-tailed unpaired Student’s t-tests or one-way ANOVA combined with 219 

Dunnett’s test for multiple comparisons. Correlation analyses were performed using the Spearman's rank 220 

correlation test. StatPlus:mac LE software (AnalystSoft, Vancouver, Canada) was used for statistical 221 

analyses. All data are presented as means ± SEMs. P values < 0.05 were considered to be statistically 222 

significant. 223 
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 224 

RESULTS 225 

Monoclonal antibodies 24C1 and 42C1 recognize distinct epitopes of ILEI protein 226 

      We generated monoclonal antibodies against ILEI by immunizing BDF1 mice with 227 

recombinant His-tagged, human ILEI that was purified from conditioned medium of ILEI-228 

overexpressing HEK293 cells. Based on immunoblotting of HEK293 cell lysate and ELISA against 229 

recombinant ILEI, we selected the clones 24C1 and 42C1. The monoclonal antibodies mAb24C1 and 230 

mAb42C1 recognized both human and mouse ILEI proteins according to immunoblotting and ELISA.  231 

      To define each epitope of these antibodies, we first generated expression vectors for human 232 

ILEI mutants harboring deletion or truncation of amino acid residues 25–99 (D25–99), 100–154 (D100–233 

154), 155–190 (D155–190), or 191–227 (D191–227) (Fig. 1A). Immunoblotting of mutant ILEI-234 

transfected HEK293 cell lysates revealed that mAb24C1 failed to label ILEI-D155–190, whereas 235 

mAb42C1 did not react with ILEI-D191–227 (Fig. 1B). We also prepared several missense ILEI mutants 236 

harboring alanine substitutions of evolutionally conserved amino acid residues: G103A, G169A, D151A, 237 

R179A, W212A, C58A, C64A, C86A, and C221A. Immunoblotting revealed that mAb24C1 and 238 

mAb42C1 selectively lacked immunoreactivity to G169A-ILEI and W212A-ILEI, respectively (Fig. 239 

1C). According to a previous report on crystal structure [18], Gly169 and Trp212 are surface-exposed and 240 

distant from each other in their respective locations (Fig. 1D). These results suggest that mAb24C1 and 241 
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mAb42C1 recognize distinct epitopes of ILEI, to which the residues Gly169 and Trp212 are critical, 242 

respectively. 243 

  244 

Development and validation of the ILEI-specific ELISA 245 

      In our sandwich ELISA that was specific for ILEI, mAb42C1 was suitable as a capture antibody 246 

and horseradish peroxidase-labeled mAb24C1 was useful as a detection antibody. The optimized 247 

concentrations of the capture and detection antibodies were 1.44 and 0.50 μg/mL, respectively. The 248 

performance of this ELISA for recombinant mouse and human ILEI are shown in Fig. 1E. The standard 249 

curves were based on six serial dilutions of mouse or human recombinant ILEI and were linear over 250 

0.31–10.0 ng/mL. The detection limit (3.3 s/a, where s = SD of the blank; a = slope of the standard curve) 251 

and the quantification limit (10 s/a), which were based on eight independent determinations of a blank 252 

in standard solutions, were 0.04 and 0.11 ng/mL for mouse ILEI, respectively, and 0.05 and 0.16 ng/mL 253 

for human ILEI, respectively.  254 

      For validation of the assay at different dilutions, we used soluble fractions of mouse brain 255 

homogenates diluted at 1:10. Dilutional parallelism was determined by evaluating each sample at its 256 

initial strength (1:10) and at dilutions of 1:2, 1:4, and 1:8. Observed-to-expected ratios for the dilutional 257 

parallelism of each sample of the full-strength solution ranged from 85% to 136%. Spiking recovery was 258 

determined by adding 0.0, 1.25, 2.50, and 5.00 ng/mL of recombinant ILEI to mouse brain homogenate 259 

samples. Observed-to-expected ratios for spiking recovery of the homogenate diluted at 1:40 ranged 260 
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from 88% to 89%. The intra-assay coefficient of variation for soluble fractions of brain homogenates 261 

was <10%. 262 

 A study reported homodimerization of ILEI via intermolecular disulfide bonds [18]. According 263 

to the predicted conformation of dimerized ILEI [18], mAb42C1 recognized the opposite side of the 264 

binding interface, whereas the recognition site of mAb24C1 may be occluded by the binding interface. 265 

Both antibodies detected a single band corresponding to monomer ILEI in mouse brain lysates under 266 

reducing or nonreducing conditions (Fig. 1F). The nonreduced ILEI monomer migrated faster in SDS-267 

PAGE than the disulfide-reduced ILEI monomer (Fig. 1F), which can be explained by the formation of 268 

intramolecular disulfide bonds [18]. This indicated that no detectable level of ILEI homodimer was 269 

present in the mouse brain, at least using these antibodies. 270 

 271 

Expression and secretion of ILEI in the mouse forebrain  272 

      We collected brains and CSF every 3 h for 24 h from C57BL/6J mice housed under a 12:12 h 273 

light:dark cycle and then measured ILEI levels using the established ELISA. To examine expression 274 

levels of brain ILEI, we prepared NP40- and CHAPSO-solubilized lysates of forebrains. ILEI 275 

concentrations of forebrain lysates were within a relatively narrow range during day/night cycles (Fig. 276 

2A). To assess secretion of ILEI, we used the supernatant from ultracentrifuged forebrain homogenates. 277 

The ILEI concentrations of the soluble fractions changed periodically (Fig. 2B); thus, the extracellular 278 
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release of ILEI apparently fluctuated over time. The levels of CSF ILEI also fluctuated but were not 279 

synchronized with levels of ILEI in the soluble brain fractions (Fig. 2C). 280 

 Furthermore, we measured Ab concentrations in these same samples. Ab levels showed 281 

fluctuations that were more prominent in the soluble fractions than in the lysates and were not associated 282 

with the fluctuations of ILEI levels (Fig. 2D, E). However, Ab  fluctuation was roughly parallel to ILEI 283 

fluctuation in the CSF (Fig. 2F). 284 

 285 

Monitoring of cortical ISF ILEI and Ab by in vivo microdialysis 286 

     We used in vivo microdialysis to monitor ISF ILEI and Ab in the cerebral cortex of conscious, 287 

freely-moving AppNL-G-F knockin (KI) mice (3–4-months old), in which the humanized mutant AbPP is 288 

expressed under its endogenous promoter [16]. Dialysates were collected every hour and mouse 289 

movement was tracked. Levels of ISF ILEI periodically fluctuated and higher levels were weakly 290 

associated with higher locomotor activity (Fig. 3A, B). Intraperitoneally injected anesthetics suppressed 291 

ILEI  levels in the dialysates; however, these levels were restored by treatment with an anti-anesthetic 292 

(Fig. 3C). Anesthetic treatment also decreased Ab levels with kinetics that were similar to ILEI levels 293 

(Fig. 3D). Although ISF Ab levels have previously been reported to fluctuate over time [19], we found 294 

that ISF ILEI levels tended to inversely fluctuate relative to the fluctuating levels of Ab  (Fig. 3E, F). 295 

 296 

Activity-dependent release of ILEI and Ab 297 
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      Using reverse microdialysis, we tested pharmacological modulation of synaptic activity. 298 

Preliminary reverse microdialysis of bromophenol blue solution in the frontal cortex resulted in its focal 299 

diffusion within the restricted area even after continuous perfusion for 48 h (Fig. 4A). Perfusion with 300 

tetrodotoxin, a voltage-dependent sodium channel blocker, suppressed ILEI levels in a dose-dependent 301 

manner (Fig. 4B). A similar decrease in ISF Ab levels was reported in a previous report [12]. 302 

Intraperitoneal administration of tetanus toxin, an inhibitor of synaptic vesicle exocytosis, decreased 303 

ILEI and Ab levels in the dialysates (Fig. 4C), indicating that the release of ILEI and Ab into the ISF is 304 

associated with synaptic vesicle exocytosis. Levels of ISF ILEI decreased by >95% after tetanus toxin 305 

treatment, suggesting that ISF ILEI was predominantly derived from synaptic vesicles. Furthermore, 306 

given that the rates of ILEI and Aβ showed similar declines after tetanus toxin treatment, the half-life of 307 

ISF ILEI was apparently equivalent to that of Aβ, which has previously been reported to be as short as 308 

~2 h [20]. 309 

 310 

Activation and inhibition of glutamatergic receptors 311 

      Our finding that ISF levels of ILEI and Ab were similarly associated with neuronal activity but 312 

inversely fluctuated in untreated mice seemed paradoxical. To address this issue, we examined how 313 

evoked activation or basal activity inhibition of distinct neurotransmitter receptors affected ISF ILEI and 314 

Aβ levels. Hettinger et al. [21] reported that reverse dialysis of AMPA and NBQX, an agonist and 315 

antagonist of AMPA-type receptors, respectively, gradually decreased ISF Aβ levels in the hippocampus 316 
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of mutant AbPP- and mutant Presenilin-1-double transgenic (APPswe/PS1DE9) mice. We observed 317 

similar effects of AMPA and NBQX on ISF Aβ levels following cortical microdialysis in AppNL-G-F mice 318 

(Fig. 5A, B). Specifically, NBQX decreased ISF ILEI levels, whereas AMPA increased ISF ILEI levels 319 

from 20 h after reverse dialysis began (Fig. 5A, B). An important characteristic of AMPA receptors is 320 

rapid desensitization; in a previous study, perfusion of 1 μM and 100 μM AMPA into the rat 321 

hippocampus increased and decreased the 5-HT level in dialysates, respectively [22]. Similarly, we 322 

tested perfusions of 1, 20, and 100 μM AMPA and found that ILEI levels increased in a dose-dependent 323 

manner (Fig. 5C); this suggests that desensitization of AMPA receptors did not affect ILEI release. 324 

Hettinger et al. (2018) reported a similar result for Aβ release [21]. 325 

      Treatment with higher doses of NMDA reduced ISF Ab in the neocortex of AppNL-G-F mice 326 

whereas treatment with D-AP5, an NMDA receptor antagonist, markedly increased ISF Ab levels (Fig. 327 

5D), consistent with previous findings from hippocampal microdialysis of APPswe/PS1DE9 transgenic 328 

mice [23]. Similarly, NMDA reduced ISF ILEI levels; however, D-AP5 treatment led to a delayed 329 

decrease in ILEI levels (Fig. 5E). 330 

 331 

Activation and inhibition of GABAergic receptors 332 

       Microdialysis perfusion of diazepam and baclofen, agonists of GABAA and GABAB receptors, 333 

respectively, suppressed ISF ILEI and Ab levels, whereas perfusion of the antagonists of these receptors 334 

led to a marked increase in both ILEI and Ab levels (Fig. 6). These results are consistent with the 335 
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sustained stimulation of GABAergic receptors suppressing overall cortical neuronal activity. It must be 336 

noted, however, that the decrease in ISF ILEI levels after diazepam treatment was rapid and reached 337 

>90% at its peak, while ISF Ab levels decreased to <50% of the baseline. These findings suggest that 338 

ILEI may be released directly from GABAA receptor-expressing neurons at their depolarization. During 339 

the perfusion, we did not observe any obvious changes in mouse behavior or awake-sleep cycles. 340 

 341 

Activation and inhibition of cholinergic receptors 342 

      Perfusion of nicotine and tubocurarine, an agonist and antagonist of nicotinic acetylcholine 343 

(ACh) receptors, respectively, increased ISF Ab levels (Fig. 7A, B). Although nicotine treatment did not 344 

alter the average levels of ISF ILEI, it did result in a higher amplitude and more regular cycle of periodic 345 

fluctuations in these levels: the amplitude was approximately 50% that of the baseline level over a ~12 346 

h cycle (Fig. 7A). Tubocurarine treatment did not have any clear effect on ISF ILEI in the acute phase 347 

but increased ILEI levels >24 h after perfusion began (Fig. 7B). Perfusion of pilocarpine and atropine, 348 

an agonist and antagonist for muscarinic ACh receptors, respectively, decreased and increased ISF Aβ 349 

levels, respectively (Fig. 7C, D), consistent with previous findings [24, 25]. Similarly, pilocarpine 350 

decreased ILEI levels; however, atropine did not affect ILEI levels (Fig. 7C, D).  351 

 352 

Reduced expression of ILEI in AD brains 353 
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 Using semi-quantitative immunoblotting, we previously showed that ILEI expression levels 354 

decreased in autopsy brains of AD patients compared with those of non-demented controls and non-AD 355 

disease controls, including brains of patients with corticobasal degeneration, progressive supranuclear 356 

palsy, amyotrophic lateral sclerosis, Parkinson’s disease, and dementia with Lewy bodies [10]. To 357 

measure ILEI levels in autopsied brains, we validated our ELISA method with a soluble fraction of 358 

human brains as previously described. The limits of detection and quantification were 0.24 and 0.74 359 

ng/mL, respectively. The observed-to-expected ratios of the dilutional parallelism and spiking recovery 360 

were in the ranges of 94%–99%, and 72%–99%, respectively. The intra-assay coefficient of variation 361 

was <10%. Using ELISA, we examined ILEI levels in the same set of autopsied brains according to our 362 

previous report [10], and confirmed a significant and selective decrease in ILEI levels in AD brains (Fig. 363 

8A). Furthermore, we measured ILEI concentrations in CSF samples of clinical subjects and found that 364 

CSF ILEI levels correlated with those of Aβ40 and Aβ42 and were lower in AD and MCI patients than in 365 

control patients (Fig. 8B, C). 366 

 367 

DISCUSSION 368 

      We quantitatively examined the extracellular release of ILEI protein in the medial prefrontal 369 

cortex of the mouse brain while also comparing ILEI levels with those of Aβ peptides. We found that 370 

ISF ILEI levels exhibited circadian fluctuation, which was similar to reports on Aβ. Our results suggested 371 

that extracellular release of these proteins was associated with neuronal activity and largely depended on 372 
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tetanus toxin-sensitive exocytosis of the synaptic vesicle and the circadian fluctuation of ILEI and Aβ 373 

was loosely linked to mouse locomotor activity. In addition, we revealed a superimposed fluctuation in 374 

which ILEI and Aβ levels were inversely altered. Perfusion of agonists or antagonists for glutamate, 375 

GABA, and ACh receptors differentially altered ISF ILEI and Aβ levels, indicating that these proteins 376 

are released from distinct subpopulations of presynaptic terminals. Declines in ISF ILEI and Aβ levels 377 

followed inhibited depolarization of AMPA, GABAA, or GABAB receptor-expressing neurons, which 378 

suggests that the normal activities of these receptors directly or indirectly sustain ISF ILEI and Aβ levels 379 

in vivo. 380 

      The cerebral cortex predominantly consists of two types of neurons: (1) glutamatergic 381 

projection neurons reciprocally connected to the thalamus and to each other, and (2) mainly local circuit 382 

GABAergic neurons [26]. The basal forebrain cholinergic system innervates the neocortex to act as a 383 

slow modulator that increases the excitability of neuronal networks [27]. In the present study, reverse 384 

microdialysis in the cerebral cortex resulted in focal diffusion of compounds even after prolonged 385 

perfusion, and infusion of agonists or antagonists was presumed to modulate activation of the target 386 

receptor-expressing neurons near the dialysis probe. Output synapses of the local circuit neurons are 387 

located near the dialysis probe, whereas axon terminals of the projection neurons are far from the probe 388 

but involved in the reciprocal networks. ILEI and Aβ are known to be released predominantly from 389 

presynaptic terminals [28, 29]. Hence, prolonged perfusion of receptor modulators would likely have 390 

both direct and indirect effects on the ISF ILEI and Aβ levels around the probe. Such indirect effects are 391 
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predicted to be mediated by the inter-regional network connections in which the probe-inserted site is 392 

involved. Nevertheless, reverse microdialysis with receptor modulators in the cerebral cortex resulted in 393 

similar effects on ISF Aβ levels as those previously reported in the hippocampus [21, 23]. 394 

      AMPA receptors are expressed on the major population of synapses that mediate fast excitatory 395 

transmission in the cerebral cortex. Among the receptor modulator treatments tested in this study, AMPA 396 

treatment was unique in producing opposing effects on ISF ILEI and Aβ levels: an increase in ILEI and 397 

a decrease in Aβ. The paradoxical finding that the levels of ILEI and Ab in the ISF are similarly 398 

associated with neuronal activity but fluctuate inversely can possibly be explained by a transition in the 399 

dominancy of AMPA receptor-mediated synaptic activation. On the other hand, continuous stimulation 400 

of nicotinic ACh receptors enhanced the spontaneous fluctuation of ISF ILEI levels: nicotine treatment 401 

resulted in a higher amplitude and more regular cycle of periodic fluctuations in ILEI levels. Nicotinic 402 

cholinergic stimulation is known to potentiate glutamatergic transmission [30] and is required for the 403 

generation of synchronized ultraslow fluctuation of neuronal activity in the prefrontal cortex [31]. 404 

However, the underlying mechanism of these effects could not be addressed in the present study and it 405 

will therefore require further investigation in future research. 406 

      Recently, Rice et al. [32] reported that the distribution of AbPP is prominent in GABAergic 407 

interneurons in the hippocampus, and they showed that 98% of AbPP-positive cells in the CA1 region 408 

are GABAB receptor subunit 1-positive. In the present study, treatment with agonists of GABAA or 409 

GABAB receptors reduced ISF Aβ levels whereas treatment with antagonists of these receptors 410 
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remarkably increased ISF Aβ levels. While our results seem to be discordant with the findings of [32], it 411 

is currently unclear whether this discrepancy is due to differences between the hippocampus and cerebral 412 

cortex or between direct and indirect effects. 413 

      Cholinergic receptors are expressed at only 3% of the total number of nerve terminals in the rat 414 

hippocampus, and AbPP is then colocalized at approximately 3%–4% of cholinergic terminals [33]. 415 

Nevertheless, in our study, prolonged perfusion of agonists or antagonists of these receptors led to 416 

marked changes in cortical ISF levels of ILEI and Aβ. For example, nicotine perfusion unexpectedly 417 

enhanced ISF Aβ levels in the cerebral neocortex. Chronic nicotine treatment has been shown to reduce 418 

Aβ deposition in the brain of AbPP-transgenic (Tg2576) mice [34]. These findings suggest the 419 

possibility that nicotine could produce unidentified effects on Aβ degradation or aggregation. Indeed, 420 

cotinine, a stable metabolite of nicotine, can inhibit Aβ oligomerization and fibrillation [35]. 421 

      The results of this study are consistent with those of previous studies showing that ILEI and 422 

AbPP are constituents of the release-competent pool of synaptic vesicles [15, 36]. Although the 423 

modulatory activities of released Aβ on synaptic transmission have been reported (reviewed by [37]), 424 

the physiological functions of ILEI at the synaptic terminal remain to be clarified. Barthet, et al. [38] 425 

reported that inhibiting γ-secretase cleavage of synaptic AbPP impairs the replenishment of release-426 

competent synaptic vesicles, thus, extracellular ILEI might modify these functions of Aβ and AbPP. 427 

      In contrast to ISF levels of ILEI and Ab, CSF levels of these proteins were roughly paralleled 428 

in mouse and clinical samples. The difference in these fluctuations between ISF and CSF may be 429 
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attributable to differences in fluid volume between ISF and CSF or in turnover dynamics between ILEI 430 

and Ab. Our finding that CSF ILEI levels were significantly lower in AD and MCI patients than in 431 

control patients suggests that CSF ILEI might be a surrogate marker for brain Ab accumulation or AD 432 

development. To more accurately evaluate Ab and ILEI levels in clinical samples, it will however be 433 

necessary to carefully assess the condition of patients before and during CSF sampling. 434 

 435 

ACKNOWLEDGEMENTS 436 

    This research was supported by AMED under Grant Number 20dm0107141h0004 (to MNi), 437 

20dm0107142h0004 (to TS), 20dm0107143h0004 (to TI), JP20dm0207073 (to TI), and 438 

JP18dm0107103 (to SM). This work was also supported in part by Grants-in-Aid for Scientific Research 439 

from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (19K16912 to MNa, 440 

19H03546 to MNi, and 19K21585 to MNi), and Smoking Research Foundation (to MNi).  441 

 442 

CONFLICT OF INTEREST 443 

   The authors have no conflict of interest to report. 444 

 445 

  446 



 26 

REFERENCES 447 

[1] Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH (2010) TGF-b-mediated 448 

phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of 449 

Dab2 and ILEI. Nat Cell Biol 12, 286-293. 450 

[2] Lahsnig C, Mikula M, Petz M, Zulehner G, Schneller D, van Zijl F, Huber H, Csiszar A, Beug 451 

H, Mikulits W (2009) ILEI requires oncogenic Ras for the epithelial to mesenchymal transition 452 

of hepatocytes and liver carcinoma progression. Oncogene 28, 638-650. 453 

[3] Mackenzie NC, Raz E (2006) Found in translation: A new player in EMT. Dev Cell 11, 434-454 

436. 455 

[4] Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, Della Peruta M, 456 

Bassi C, Miyazaki K, Sorio C (2005) Identification of proteins released by pancreatic cancer 457 

cells by multidimensional protein identification technology: a strategy for identification of 458 

novel cancer markers. FASEB J 19, 1125-1127. 459 

[5] Waerner T, Alacakaptan M, Tamir I, Oberauer R, Gal A, Brabletz T, Schreiber M, Jechlinger 460 

M, Beug H (2006) ILEI: a cytokine essential for EMT, tumor formation, and late events in 461 

metastasis in epithelial cells. Cancer Cell 10, 227-239. 462 

[6] Maatta JA, Bendre A, Laanti M, Buki KG, Rantakari P, Tervola P, Saarimaki J, Poutanen M, 463 

Harkonen P, Vaananen K (2016) Fam3c modulates osteogenic cell differentiation and affects 464 

bone volume and cortical bone mineral density. Bonekey Rep 5, 787. 465 



 27 

[7] Bendre A, Buki KG, Maatta JA (2017) Fam3c modulates osteogenic differentiation by down-466 

regulating Runx2. Differentiation 93, 50-57. 467 

[8] Chen Z, Ding L, Yang W, Wang J, Chen L, Chang Y, Geng B, Cui Q, Guan Y, Yang J (2017) 468 

Hepatic activation of the FAM3C-HSF1-CaM pathway attenuates hyperglycemia of obese 469 

diabetic mice. Diabetes 66, 1185-1197. 470 

[9] Chen Z, Wang J, Yang W, Chen J, Meng Y, Feng B, Chi Y, Geng B, Zhou Y, Cui Q, Yang J 471 

(2017) FAM3C activates HSF1 to suppress hepatic gluconeogenesis and attenuate 472 

hyperglycemia of type 1 diabetic mice. Oncotarget 8, 106038-106049. 473 

[10] Hasegawa H, Liu L, Tooyama I, Murayama S, Nishimura M (2014) The FAM3 superfamily 474 

member ILEI ameliorates Alzheimer's disease-like pathology by destabilizing the penultimate 475 

amyloid-b precursor. Nat Commun 5, 3917. 476 

[11] Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R 477 

(2003) APP processing and synaptic function. Neuron 37, 925-937. 478 

[12] Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, 479 

Mennerick S, Holtzman DM (2005) Synaptic activity regulates interstitial fluid amyloid-b 480 

levels in vivo. Neuron 48, 913-922. 481 

[13] Sperling RA, Laviolette PS, O'Keefe K, O'Brien J, Rentz DM, Pihlajamaki M, Marshall G, 482 

Hyman BT, Selkoe DJ, Hedden T, Buckner RL, Becker JA, Johnson KA (2009) Amyloid 483 



 28 

deposition is associated with impaired default network function in older persons without 484 

dementia. Neuron 63, 178-188. 485 

[14] Pascoal TA, Mathotaarachchi S, Kang MS, Mohaddes S, Shin M, Park AY, Parent MJ, 486 

Benedet AL, Chamoun M, Therriault J, Hwang H, Cuello AC, Misic B, Soucy JP, Aston JAD, 487 

Gauthier S, Rosa-Neto P (2019) Ab-induced vulnerability propagates via the brain's default 488 

mode network. Nat Commun 10, 2353. 489 

[15] Liu L, Watanabe N, Akatsu H, Nishimura M (2016) Neuronal expression of ILEI/FAM3C and 490 

its reduction in Alzheimer's disease. Neuroscience 330, 236-246. 491 

[16] Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) 492 

Single App knock-in mouse models of Alzheimer's disease. Nat Neurosci 17, 661-663. 493 

[17] Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R (2011) Novel microdialysis 494 

method to assess neuropeptides and large molecules in free-moving mouse. Neuroscience 186, 495 

110-119. 496 

[18] Jansson AM, Csiszar A, Maier J, Nystrom AC, Ax E, Johansson P, Schiavone LH (2017) The 497 

interleukin-like epithelial-mesenchymal transition inducer ILEI exhibits a non-interleukin-like 498 

fold and is active as a domain-swapped dimer. J Biol Chem 292, 15501-15511. 499 

[19] Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, Fujiki N, Nishino S, Holtzman 500 

DM (2009) Amyloid-b dynamics are regulated by orexin and the sleep-wake cycle. Science 501 

326, 1005-1007. 502 



 29 

[20] Cirrito JR, May PC, O'Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, 503 

Bales KR, Paul SM, DeMattos RB, Holtzman DM (2003) In vivo assessment of brain 504 

interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-b metabolism 505 

and half-life. J Neurosci 23, 8844-8853. 506 

[21] Hettinger JC, Lee H, Bu G, Holtzman DM, Cirrito JR (2018) AMPA-ergic regulation of 507 

amyloid-b levels in an Alzheimer's disease mouse model. Mol Neurodegener 13, 22. 508 

[22] Whitton PS, Maione S, Biggs CS, Fowler LJ (1994) Tonic desensitization of hippocampal 509 

alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors regulates 5-510 

hydroxytryptamine release in vivo. Neuroscience 63, 945-948. 511 

[23] Verges DK, Restivo JL, Goebel WD, Holtzman DM, Cirrito JR (2011) Opposing synaptic 512 

regulation of amyloid-b metabolism by NMDA receptors in vivo. J Neurosci 31, 11328-11337. 513 

[24] Beach TG, Kuo YM, Schwab C, Walker DG, Roher AE (2001) Reduction of cortical amyloid 514 

b levels in guinea pig brain after systemic administration of physostigmine. Neurosci Lett 310, 515 

21-24. 516 

[25] Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, LaFerla FM (2006) 517 

M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 518 

49, 671-682. 519 

[26] Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the 520 

cerebral cortex. Brain Res Brain Res Rev 26, 113-135. 521 



 30 

[27] Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic 522 

signaling shapes nervous system function and behavior. Neuron 76, 116-129. 523 

[28] Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D, Gouras GK, Kirkwood A, 524 

Morris RG, Shen J (2005) Conditional inactivation of presenilin 1 prevents amyloid 525 

accumulation and temporarily rescues contextual and spatial working memory impairments in 526 

amyloid precursor protein transgenic mice. J Neurosci 25, 6755-6764. 527 

[29] Willen K, Sroka A, Takahashi RH, Gouras GK (2017) Heterogeneous Association of 528 

Alzheimer's disease-linked amyloid-b and amyloid-b protein precursor with synapses. J 529 

Alzheimers Dis 60, 511-524. 530 

[30] Halff AW, Gomez-Varela D, John D, Berg DK (2014) A novel mechanism for nicotinic 531 

potentiation of glutamatergic synapses. J Neurosci 34, 2051-2064. 532 

[31] Koukouli F, Rooy M, Changeux JP, Maskos U (2016) Nicotinic receptors in mouse prefrontal 533 

cortex modulate ultraslow fluctuations related to conscious processing. Proc Natl Acad Sci U S 534 

A 113, 14823-14828. 535 

[32] Rice HC, Marcassa G, Chrysidou I, Horre K, Young-Pearse TL, Muller UC, Saito T, Saido 536 

TC, Vassar R, de Wit J, De Strooper B (2020) Contribution of GABAergic interneurons to 537 

amyloid-b plaque pathology in an APP knock-in mouse model. Mol Neurodegener 15, 3. 538 



 31 

[33] Rodrigues DI, Gutierres J, Pliassova A, Oliveira CR, Cunha RA, Agostinho P (2014) Synaptic 539 

and sub-synaptic localization of amyloid-b protein precursor in the rat hippocampus. J 540 

Alzheimers Dis 40, 981-992. 541 

[34] Nordberg A, Hellstrom-Lindahl E, Lee M, Johnson M, Mousavi M, Hall R, Perry E, Bednar I, 542 

Court J (2002) Chronic nicotine treatment reduces b-amyloidosis in the brain of a mouse 543 

model of Alzheimer's disease (APPsw). J Neurochem 81, 655-658. 544 

[35] Echeverria V, Zeitlin R, Burgess S, Patel S, Barman A, Thakur G, Mamcarz M, Wang L, 545 

Sattelle DB, Kirschner DA, Mori T, Leblanc RM, Prabhakar R, Arendash GW (2011) Cotinine 546 

reduces amyloid-b aggregation and improves memory in Alzheimer's disease mice. J 547 

Alzheimers Dis 24, 817-835. 548 

[36] Lassek M, Weingarten J, Einsfelder U, Brendel P, Muller U, Volknandt W (2013) Amyloid 549 

precursor proteins are constituents of the presynaptic active zone. J Neurochem 127, 48-56. 550 

[37] Ludewig S, Korte M (2016) Novel insights into the physiological function of the APP (gene) 551 

family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci 9, 161. 552 

[38] Barthet G, Jorda-Siquier T, Rumi-Masante J, Bernadou F, Muller U, Mulle C (2018) 553 

Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nat 554 

Commun 9, 4780. 555 

 556 

  557 



 32 

FIGURE LEGENDS 558 

Figure 1 559 

Characterization of mAb24C1, mAb42C1, and sandwich ELISA for ILEI. A) Scheme of the ILEI 560 

construct and deletion mutants. The predicted conformation model of ILEI protein contains nine b-sheets 561 

(b) and three a-helices (a). SS: signal sequence; V5: V5 tag. B) Lysates of HEK293 cells (lane 1) or 562 

ILEI-knockout HEK293 cells transiently transfected with mock, V5-tagged wild-type, or various ILEI 563 

deletion mutants (lanes 2–7) were subjected to SDS-PAGE. Blots were probed with anti-V5 antibody, 564 

mAb24C1, or mAb42C1. C) Immunoblotting using lysates of ILEI-knockout HEK293 cells transiently 565 

transfected with mock, V5-tagged wild-type, or various missense mutant ILEI constructs. Blots were 566 

probed with anti-V5, mAb24C1, mAb42C1, or anti-GAPDH antibodies. D) Gly169 and Trp212 are distant 567 

from each other on the ILEI structure: Gly169 is located in the loop between the 2nd and 3rd a-helices, 568 

whereas Trp212 is located in the loop between the 8th and 9th b-sheets. E) Representative standard curves 569 

from ELISA for human and mouse ILEI proteins. F) Immunoblotting of mouse brain lysate samples 570 

with no reducing agent (nonreducing), 5% 2-mercaptoethanol (2ME), or 75 mM dithiothreitol (DTT). 571 

Blots were probed using mAb24C1 or mAb42C1. 572 

 573 

Figure 2 574 

Extracellular levels of ILEI periodically fluctuate in the mouse brain. Brains and cerebrospinal fluid 575 

(CSF) were obtained every 3 h from C57BL/6J mice that were housed under a 12:12 h light:dark cycle. 576 
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CSF samples from three mice at each time point were combined. ILEI levels in brain lysates (A), the 577 

soluble fractions of brains (B), and CSF (C) were measured using ELISA. Ab levels in brain lysates (D), 578 

the soluble fractions of brains (E), and CSF (F) were also measured using mouse Ab40-specific ELISA. 579 

Values are shown as means ± SEMs (n = 3). 580 

 581 

Figure 3 582 

ISF ILEI levels are positively correlated with locomotor activity but inversely associated with ISF Ab 583 

levels. A) Cerebrocortical ILEI levels were monitored using in vivo microdialysis in a C57BL/6J mouse; 584 

the movement distance of these mice was also recorded (distances moved per hour are expressed in 585 

arbitrary units). A representative result is shown. B) Graph showing the correlation between ISF ILEI 586 

levels and movement distance (n = 144, r = 0.460). C) Mice were intraperitoneally injected with 587 

anesthetics and then with anti-anesthetic during monitoring of ISF ILEI. Values are shown as means ± 588 

SEMs from three independent experiments. D) Cerebrocortical ISF levels of ILEI and Ab were measured 589 

after intraperitoneal injection with anesthetics. Values shown represent means ± SEM from three 590 

independent experiments. All values for each mouse were normalized as percentages of the basal level, 591 

which was defined as the mean concentration from samples obtained before injection (C, D). E) Cortical 592 

ISF levels of ILEI and Ab were simultaneously monitored via in vivo microdialysis in AppNL-G-F mice 593 

for 2 days. A representative result is shown. F) Reverse correlation between ISF ILEI and Ab levels (n 594 

= 112, r = 0.423). 595 
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 596 

Figure 4 597 

ILEI is released into the ISF in a synaptic activity-dependent manner. A) Reverse microdialysis of 598 

bromophenol blue for 48 h resulted in local diffusion in the frontal cortex of mice. The arrow indicates 599 

the position of the microdialysis probe. B) Reverse microdialysis with tetrodotoxin (TTX) reduced the 600 

cortical ISF ILEI levels of AppNL-G-F mice in a dose-dependent manner. C) Intraperitoneal administration 601 

of tetanus toxin decreased ISF levels of ILEI and Ab in dialysates. Values are shown as means ± SEMs 602 

from three independent experiments. All values for each mouse were normalized as percentages of the 603 

basal level, which was defined as the mean concentration from samples obtained before reverse dialysis 604 

or treatment. 605 

 606 

Figure 5 607 

Extracellular ILEI and Ab levels were differentially altered by treatment with agonists or antagonists of 608 

AMPA and NMDA receptors. Indicated doses of AMPA (A), NBQX (B), AMPA (C), NMDA (D), and 609 

D-AP5 (E) were administered through reverse microdialysis to the frontal cortex of AppNL-G-F mice. The 610 

graphs show relative levels of extracellular ILEI (closed diamonds) and Ab (open diamonds). All values 611 

for each mouse were normalized as percentages of the basal level, which was defined as the mean 612 

concentration from samples obtained before reverse dialysis. 613 

 614 
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Figure 6 615 

Activation of GABAA or GABAB receptors reduced extracellular ILEI and Ab levels. Indicated doses 616 

of diazepam (A), picrotoxin (B), baclofen (C), and CGP55845 (D) were administered through reverse 617 

microdialysis to the frontal cortex of AppNL-G-F mice. The graphs show relative levels of extracellular 618 

ILEI (closed diamonds) and Ab (open diamonds). Values are shown as means ± SEMs from three 619 

independent experiments. All values for each mouse were normalized as percentages of the basal level, 620 

which was defined as the mean concentration from samples obtained before reverse dialysis. 621 

 622 

Figure 7 623 

Extracellular ILEI and Ab levels were differentially altered by treatment with agonists or antagonists of 624 

nicotinic and muscarinic ACh receptors. Indicated doses of nicotine (A), tubocurarine (B), pilocarpine 625 

(C), and atropine (D) were administered through reverse microdialysis to the frontal cortex of AppNL-G-F 626 

mice. The graphs show relative levels of extracellular ILEI (closed diamonds) and Ab (open diamonds). 627 

Values are shown as means ± SEMs from three independent experiments. All values for each mouse 628 

were normalized as percentages of the basal level, which was defined as the mean concentration from 629 

samples obtained before reverse dialysis. 630 

 631 

Figure 8 632 
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Reduced expression of ILEI in the AD brain. A) ILEI levels in soluble fractions from temporal cortex 633 

homogenates from AD brains (n = 15), age-matched non-neurological disease controls (n = 15), and 634 

non-AD neurological disease controls (n = 10) were measured using ELISA. Non-AD disease controls 635 

included corticobasal degeneration (2 cases), progressive supranuclear palsy (2 cases), amyotrophic 636 

lateral sclerosis (2 cases), Parkinson’s disease (2 cases), and dementia with Lewy bodies (2 cases). Lines 637 

and error bars represent means ± SEM. Statistical analysis was performed using Dunnett’s multiple 638 

comparison test. Significant differences relative to the ratio in controls are indicated (mean ± SE, 639 

*p < 0.05). B) ILEI concentrations in CSF from AD patients (n = 25), MCI patients (n = 25), and age-640 

matched non-neurological disease controls (n = 25) were measured using ELISA. Lines and error bars 641 

represent means ± SEM. Statistical analysis was performed using Dunnett’s multiple comparison test. 642 

Significant differences relative to the ratio in controls are indicated (mean ± SE, **p < 0.01). C) CSF 643 

ILEI concentrations were correlated with those of Aβ40 (n = 75, r = 0.678) and Aβ42 (n = 75, r = 0.627). 644 

 645 
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