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Vertebrates have acquired complex high-order functions facilitated by the dispersion
of vascular and neural networks to every corner of the body. Blood vessels deliver
oxygen and nutrients to all cells and provide essential transport systems for removing
waste products. For these functions, tissue vascularization must be spatiotemporally
appropriate. Recent studies revealed that blood vessels create a tissue-specific niche,
thus attracting attention as biologically active sites for tissue development. Each
capillary network is critical for maintaining proper brain function because age-related
and disease-related impairment of cognitive function is associated with the loss or
diminishment of brain capillaries. This review article highlights how structural and
functional alterations in the brain vessels may change with age and neurogenerative
diseases. Capillaries are also responsible for filtering toxic byproducts, providing an
appropriate vascular environment for neuronal function. Accumulation of amyloid β is
a key event in Alzheimer’s disease pathogenesis. Recent studies have focused on
associations reported between Alzheimer’s disease and vascular aging. Furthermore,
the glymphatic system and meningeal lymphatic systems contribute to a functional unit
for clearance of amyloid β from the brain from the central nervous system into the
cervical lymph nodes. This review article will also focus on recent advances in stem cell
therapies that aim at repopulation or regeneration of a degenerating vascular system for
neural diseases.
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INTRODUCTION

The brain’s vascular system is highly organized to efficiently deliver oxygen and glucose to its
tissues. Anatomically, dense vascular networks of arteries and veins are found in the pia mater,
whereas the parenchyma contains only capillaries. The basic structure of the blood vessels in the
neocortex is the delivery of blood from the cortical surface by the pial vessels into the parenchyma
perpendicularly by the periventricular vessels and drainage to the surface. Generally, arteries that
supply blood to the brain branch into smaller arterioles, which eventually branch into the smallest
blood vessels, known as capillaries. Capillaries carry oxygen and nutrients to the surrounding neural
cells, and the capillary network is where the majority of the molecular exchange occurs between
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FIGURE 1 | The neocortex-specific capillary structure is constructed during development but is broken down with aging. The vascular network is constructed to
create a spatiotemporal capillary milieu in the brain. However, age-related structural decline in the integrity of the vascular system including vascular rarefaction
contributes to various neural diseases.

blood and tissue. A recent study showed that capillary endothelial
cells (ECs) in the aged brain exhibit transcriptional change
primarily, in comparison with arterial and venous cells (Chen
et al., 2020).

What happens to the brain when blood vessels are lost? More
than one hundred years ago, Osler (1898) stated, ‘‘A man is
as old as his arteries’’. Tissues cannot survive without blood
vessels to supply sufficient oxygen and nutrients. This is the
case during embryonic development, for example, when the
unfavorable distribution of vascular networks interferes with the
normal development of organs. In contrast, brain vasculature
undergoes many structural and functional alterations during
aging (Figure 1). For example, capillary density declines (Klein
and Michel, 1977; Wilkinson et al., 1981; Reeson et al., 2018),
neovascularization potential attenuates (Frenkel-Denkberg et al.,
1999; Rivard et al., 1999, 2000; Gao et al., 2009), plasma-
derived circulatory cues become impaired (Villeda et al., 2011;
Katsimpardi et al., 2014; Castellano et al., 2017), blood-brain
barrier (BBB) permeability increases (Villeda et al., 2011; Lee P.
et al., 2012), and the cerebral blood flow (CBF) decreases (Tarumi
and Zhang, 2018). Also, recent studies suggest that structural
and functional lymphatic vessels lining the dural sinuses drain
macromolecules from the central nervous system (CNS) into the
cervical lymph nodes (Aspelund et al., 2015; Louveau et al., 2015;
Sun et al., 2018; Figure 2). Mixed pathologies of both Alzheimer’s
disease (AD) and vascular abnormalities are the most common
cause of clinical dementia in the elderly (Attems and Jellinger,
2014; Bennett et al., 2018; Sweeney et al., 2018a). Herein, we
discuss these and also explore the recent advance of stem cell
therapy that targets neovascularization during neural diseases.

SYSTEMATIC VASCULAR PLEXUS IS
CONSTRUCTED DURING NEOCORTICAL
DEVELOPMENT AND MAINTAINED TO
EXERT DIVERSE FUNCTIONS

The neocortex is one of the most sophisticated brain tissues.
It consists of a horizontal six-layered structure, separated by
cellular subtypes and neuronal projections (Bayer and Altman,
1991). The mammalian brain possesses characteristic regions
of neural stem and progenitor cells (NSPCs), including the
ventricular zone (VZ), and the subventricular zone (SVZ),
which lines the lateral ventricles. NSPCs proliferate and
self-renew to give rise to neurons, glia, and oligodendrocytes
for normal brain development. An appropriate balance between
self-renewal and differentiation is crucial for stem cell functions
to generate precise cellular diversity in the neocortex (Mizutani
et al., 2007; Franco and Müller, 2013; Inoue et al., 2017).
The specific microenvironment where these stem cells are
localized, the so-called stem cell niche, regulates quiescence,
activation, differentiation, and cell fate. Recent studies have
shown that one of the prominent components of the regulatory
niche is the vascular niche (Vasudevan et al., 2008; Won
et al., 2013; Ottone et al., 2014; Bjornsson et al., 2015; Tan
et al., 2016), which creates specialized microenvironments
via physically direct contact (Tavazoie et al., 2008;
Komabayashi-Suzuki et al., 2019) and secreted-soluble factors
(Shen et al., 2004, 2008; Kokovay et al., 2010).

Blood vessels have a relatively simple structure consisting
of ECs that are surrounded by a basal lamina and an
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FIGURE 2 | The dysfunction of the vascular system is an integral part of Alzheimer’s disease. The glymphatic system and meningeal lymphatic systems contribute
to a functional unit for clearance of amyloid β from the brain into the cervical lymph nodes, and their function declines with aging. Aβ protein is deposited in and
around capillaries, and its accumulation in the brain is largely considered the main cause of Alzheimer’s disease.

outer layer of pericytes (PEs). Blood vessel patterns vary
markedly among different tissues and organs. The diversity
and plasticity of vascular networks are considered important
for this system to perform its distinct functions in each tissue
and organ (Takashima et al., 2019). Evidence has shown
that ECs, which show remarkable structural and functional
heterogeneity, may be responsible for this diversity (Aird,
2007). Recent studies have demonstrated that molecular profiles
define the heterogeneity of ECs in the capillaries found in
different tissues (Nolan et al., 2013; Vanlandewijck et al.,
2018). These heterogeneous differences were confirmed by both
in vitro differentiation and an in vivo transplantation system
(Nolan et al., 2013).

Oxygen level is a particularly important element in the
regulation of ECs and PEs and determines how tissue
vascularization is constructed. In hypoxic cells, hypoxia-
inducible factor-1α (HIF-1α) is activated (Semenza and Wang,
1992) and drives vascular endothelial growth factor (VEGF) and
other hypoxia-responsive genes. It also regulates the recruitment
of endothelial progenitor cells in the endothelial lining of
blood vessels to vascularization sites (Kelly et al., 2003). It
has been suggested that these dynamic changes in expression
during the developmental process play an important role in
the construction of the brain’s vascular network (Gustafsson
et al., 2005; Li et al., 2014; Wagenführ et al., 2015; Lange
et al., 2016), but its specific details of this process have not yet
been discovered.

CNS cells, including neurons and glial cells (e.g., astrocytes
and microglia), closely interact with angiogenesis and
vasculogenesis (Ma et al., 2013; Takahashi et al., 2015; Tan
et al., 2016; Himmels et al., 2017). In a recent study, we found

that an avascular region without a capillary invasion was
specifically constructed in the VZ where mitotic progenitors are
located, and NSPCs transiently expressed HIF-1α and VEGF,
thereby attracting vascular endothelial tip cells (Komabayashi-
Suzuki et al., 2019). The expression level of these proteins
in the VZ gradually decreased, while their levels gradually
increased in the intermediate zone (IZ) at later developmental
stages (Komabayashi-Suzuki et al., 2019). Another recent
study demonstrated that HIF-1α stabilization is required for
the maturation arrest of oligodendrocyte progenitor cells
(OPCs) through Wnt7a/7b activation (Yuen et al., 2014).
Furthermore, we showed that OPCs come into contact
with ECs frequently in the IZ and that the spatiotemporal
HIF-1α activation corresponds with the timing of OPC
maturation (Komabayashi-Suzuki et al., 2019). This suggests
that the spatiotemporal regulation of HIF-1α and VEGF
expression plays an essential role in the cytoarchitecture
of both the vascular system and the neural system in
the neocortex.

THE BRAIN-SPECIFIC CAPILLARY
STRUCTURE BREAKS DOWN WITH AGING

The structural integrity of the vessels declines with age (Figure 1).
Additionally, there is considerable evidence of declines in
capillary density throughout the aged brain (Klein and Michel,
1977; Wilkinson et al., 1981; Reeson et al., 2018). Current
evidence suggests that neocortical microvascular pathologies,
such as age-related structural and functional declines in
the vascular plexus (e.g., vascular rarefaction), contributes
to age-related cognitive dysfunction and neurodegeneration
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(van Dijk et al., 2008; Brown and Thore, 2011). Moreover, there
appears to be an age-related decline in the neovascularization
capacity by various mechanisms. For example, HIF-1α becomes
less responsive to hypoxia during aging. VEGF also becomes
less responsive during aging, even in the presence of sufficient
VEGF levels. This is probably due to an intrinsic change
in VEGF-receptor 2 (Gao et al., 2009), and a reduction in
the expression level of VEGF itself (Frenkel-Denkberg et al.,
1999; Rivard et al., 2000). Hence, the potential for tissues
to undergo vascular remodeling is age-related and results in
decreased blood flow in the aged neocortex (Katsimpardi et al.,
2014). The mesenchyme homeobox gene, MEOX2, encodes
a family of homeodomain transcription factors expressed in
the vascular system (Gorski and Walsh, 2003). MEOX2 has
the potential to regulate the expression of many target genes,
and can therefore modify the phenotype, and function of
vascular cells. Deletion of Meox2 leads to the reduction of
brain capillary density, which causes resting CBF to diminish,
and the angiogenic response to hypoxia in the brain to
be lost (Wu et al., 2005). In adult vasculature, Meox2 is
predominantly expressed in ECs and modulates angiogenesis
and vascular network construction. Meox2 that has gained
or lost its function can also cause the vascular structure
to be altered (Wu et al., 2005; Gohn et al., 2017). Also,
Meox2 expression in vascular smooth muscle cells (VSMCs)
is downregulated in response to serum, growth factors, and
vascular injury (Gorski et al., 1993; Weir et al., 1995). These
studies support a role for Meox2 in the maintenance of
vascular integrity.

It is well known that age-related endothelial dysfunction is
associated with prominent changes in the BBB, and aberrant
activities within the neurovascular unit (NVU; Cai et al.,
2017; Li et al., 2019). The BBB is a complex functional and
anatomical structure composed of brain microvascular ECs
that communicate with PEs and astrocytes, which enables these
cells to organize into a well-structured NVU with neurons
(Banks et al., 2018; Figure 1). Cerebral capillary ECs contain
tight junctions, which tightly sealed cell-to-cell contact between
adjacent ECs to form a continuous vascular system. This
tight seals between cells lead to high endothelial electrical
resistance, and low paracellular/transcellular permeability
(Zlokovic, 2008). Recent studies have indicated that Wnt/β-
catenin signaling is a key pathway required for both the
formation of BBB functions, and the maintenance of BBB
integrity (Engelhardt and Liebner, 2014; Liebner et al., 2018).
The binding of the Wnt ligands, Wnt7a and Wnt7b, produced
by neurons and astrocytes in the brain (Zhang et al., 2014)
to the corresponding Wnt receptor, Fzd4, and Wnt co-
receptor, LRP5/6, triggers the activation of Wnt/β-catenin
signaling in BBB formation and function (Liebner et al.,
2008; Stenman et al., 2008; Daneman et al., 2009). Also,
GPI-anchored Reck and G protein-coupled receptor, Gpr124,
have been implicated in Wnt7a/Wnt7b-specific signaling in
mammalian CNS angiogenesis, BBB integrity, and function
(Zhou and Nathans, 2014; Vanhollebeke et al., 2015; Tran et al.,
2016; Chang et al., 2017; Cho et al., 2017; Vallon et al., 2018;
Laksitorini et al., 2019).

VASCULAR DYSFUNCTION IS AN
INTEGRAL PART OF ALZHEIMER’S
DISEASE PATHOGENESIS

AD is the most common neurodegenerative disease, accounting
for an estimated 60 to 80% of dementia cases. Emerging evidence
indicates an important vascular contribution to AD, since Aβ

protein is deposited in and around capillaries, and aberrant
Aβ protein accumulation in the tissue is largely considered
to be the main cause of AD (Liesz, 2019). Recent reports
suggest that the common sporadic form of AD (late-onset),
and some familial cases of AD (early onset) are characterized
by elevated Aβ brain levels as a result of impaired Aβ

elimination instead of overproduction (Mawuenyega et al.,
2010). Normally, low Aβ levels in the brain are maintained
through degradation, and elimination via its transvascular
removal across the BBB, which results in the removal of
85% of Aβ. Removal of the remaining 15% normally occurs
via the interstitial fluid (ISF) bulk flow along the outside
of penetrating arteries, and subsequent cerebrospinal fluid
(CSF) absorption in the circulatory and lymphatic system
(Deane et al., 2004, 2008; Nelson et al., 2017; Figure 2).

Brain ECs with tight junctions form the BBB. It is
generally believed that neurodegeneration is accompanied by
BBB dysfunction (Figure 1), which begins as early as middle
age in rodents and humans. Vascular damage is the initial
insult, causing disrupted BBB function and impaired brain
perfusion that contributes to neuronal injury, and dementia
(Montagne et al., 2020; Musaeus et al., 2020). BBB disruption
occurs as capillary leakage, the deregulation of ECs-PEs-
glial communications, brain leukocyte infiltration, or aberrant
angiogenesis (Armulik et al., 2011; Sweeney et al., 2018b).
The cell-surface receptor, low-density lipoprotein receptor-
related protein-1 (LRP1), has been reported to mediate Aβ

endocytosis across the BBB (Kanekiyo et al., 2012, 2013), and
Aβ transcytosis through the brain endothelium, as well as its
subsequent systemic elimination via the liver, spleen, and kidney
(Shibata et al., 2000). LRP1 expression in the brain and brain
capillaries has been shown to decrease with age (Shibata et al.,
2000; Deane et al., 2008; Silverberg et al., 2010; Storck et al.,
2016), and its expression is further reduced in AD (Kang
et al., 2000; Shibata et al., 2000). Aβ influx transport, from the
plasma into the brain ISF occurs via the receptor for advanced
glycation end products (RAGE), which promotes inflammation
(Deane et al., 2003). Vascular aging in the brain of AD
patients, which includes reduced capillary length, and decreased
tight junction protein expression, might reflect aberrant
angiogenesis potential that originated from the impairment
of Meox2 expression in ECs (Zlokovic, 2011). In addition,
BBB disruption upregulates transforming growth factor-α
(TGF-α) signaling in astrocytes, resulting in neural dysfunction
(Senatorov et al., 2019).

Interactions between ECs and mural cells, which include
PEs and VSMCs, have recently come into focus as regulators of
vascular formation, stabilization, remodeling, and function.
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Platelet-derived growth factor receptor-β (PDGFRβ) is
predominantly expressed in the mural cells, such as capillary
PEs and VSMCs. Expression levels of PDGFRβ in PEs are
noticeably higher than those in VSMCs. Additionally, PEs
control Aβ clearance from the brain. Their loss diminishes
the removal of soluble Aβ and accelerates the onset and
progression of disease pathogenesis in mouse models of AD
(Sagare et al., 2013). PE-derived trophic supports that maintain
a healthy brain might also be lacking in AD, and PE loss
may contribute to a progressive, age-dependent, vascular-
mediated neurodegeneration in animal models (Bell et al.,
2010; Armulik et al., 2011; Nikolakopoulou et al., 2019).
The numbers of PDGFRβ-positive PEs, PE coverage of the
capillary, and the number of capillaries are all reduced in the
AD patient brain, which shows evidence of a gene-dose effect
associated with the number of APOE4 alleles (Sengillo et al.,
2013). Brain capillary damage using a novel CSF biomarker
of BBB-associated capillary PEs, PDGFRβ, and regional BBB
permeability were developed in the hippocampus of individuals
with early cognitive decline independent of Aβ and tau
pathology, suggesting that BBB damage is an early biomarker
of human cognitive dysfunction, including the early stages of
AD (Nation et al., 2019). Furthermore, elevated PDGFRβ in the
CSF was shown to predict cognitive decline in APOE4 carriers
(Montagne et al., 2020).

The lymphatic drainage system was thought for many years
to be absent in the mammalian brain. It is now accepted
that meningeal lymphatic vessels remove macromolecules, such
as Aβ protein, from the parenchyma into the cervical lymph
nodes (Figure 2), due to the rediscovery and characterization
of the CNS lymphatic system (Aspelund et al., 2015; Louveau
et al., 2015). Furthermore, a recent study has shown that
older mice have impaired brain perfusion of macromolecules
compared with that of young mice, accompanied by a decrease in
meningeal lymphatic vessel diameter and coverage (Da Mesquita
et al., 2018). Another recent study demonstrated that basal
meningeal lymphatic vessels are hotspots for the clearance of
CSF macromolecules and that its function of drainage from the
brain to the periphery is impaired with aging (Ahn et al., 2019).
Moreover, the treatment of aged mice with VEGF-C enhanced
drainage, which leads to learning and memory improvements
(DaMesquita et al., 2018). A study of the effects of the disruption
of meningeal lymphatic vessels in AD mouse models confirmed
that ablation led to the promotion of Aβ accumulation in
the meninges (Da Mesquita et al., 2018), which is similar to
human pathology.

CELL THERAPY TARGETING OF
NEOVASCULARIZATION FOR NEURAL
DISEASE TREATMENTS

Collectively, these studies suggest that the structural and
functional integrity of the vascular system is essential for normal
brain function. Improvement of the vascular system may be
a promising therapeutic strategy for improving neural disease
treatment. There is now an enormous demand for new effective

therapies in neural diseases, such as AD, because of a high and
unmet medical need to treat these neural diseases. With this
perspective, advances in stem cell-based therapies that aim to
repopulate or regenerate a degenerating vascular system have
been anticipated (Figure 1).

Mesenchymal stem cells (MSCs) have attracted attention
due to their powerful intrinsic cell therapy properties, although
the molecular mechanisms of their physiological action have
not yet been clarified. Transplantation of MSCs derived from
the human umbilical cord (Lee H. et al., 2012; Yang et al.,
2013), placenta (Yun et al., 2013), and bone marrow (Naaldijk
et al., 2017) has been reported to inhibit Aβ-induced cell death,
reduce Aβ plaque size (Yang et al., 2013; Yun et al., 2013; Naaldijk
et al., 2017), and rescue spatial learning and memory disorders
(Lee H. et al., 2012; Yang et al., 2013; Yun et al., 2013) in rodent
AD models. Another study demonstrated that intravenous
administration of ischemia-tolerant MSCs displayed significant
Aβ degradation, and had an anti-inflammatory impact in an
AD mouse model (Harach et al., 2017). Intriguingly, both bone
marrow-derived MSCs and adipose-derived stem cells (ASCs)
have been shown to enhance vascular tube formation in a
co-culture system (Ghajar et al., 2010; Verseijden et al., 2010;
Duttenhoefer et al., 2013). Additionally, ASCs express angiogenic
factors such as VEGF under hypoxic conditions (Rohringer
et al., 2014). Moreover, MSCs have the potential to induce the
differentiation of mural cells, such as PEs, by gap junction-
dependent communication between MSCs and ECs (Hirschi
et al., 2003). Also, bone marrow mononuclear cells (BM-MNC)
have been shown to activate the repopulation or regeneration
of neovascularization in ischemic tissue (Tateishi-Yuyama et al.,
2002; Taguchi et al., 2003). Furthermore, a recent study has
demonstrated that transplanted BM-MNCs activate angiogenesis
through gap junction-mediated, direct cell-to-cell interactions
between BM-MNC and ECs, followed by activation of HIF-
1α, and suppression of autophagy in the ECs of ischemic brain
tissue (Kikuchi-Taura et al., 2020). These studies suggest that
stem cell-based therapies, which have utilized MSCs, ASCs,
and BM-MNCs, have great potential for neovascularization in
neural diseases.

In other words, it is possible to lead to the creation
of new concepts on the development/progression of neural
diseases, in which vascular aging is involved, by the effect
of improving pathological conditions by the protective actions
on neovascularization, including the response mechanisms, in
which the brain capillaries undergo the actions by the physical
contact between MSCs/ASCs/BM-MNCs and ECs, and by
MSCs/ASCs/BM-MNCs-derived humoral factors.

CONCLUSIONS AND PERSPECTIVES

Interactions between vascular cells and neural cells play an
essential role in both brain development and brain aging.
In this review article, we summarized how ECs construct a
vascular plexus, and that capillary networks with tissue-specific
environments may control neocortical development, allowing
each region to maintain various distinct functions. Capillaries
in the neocortex are prone to obstruction with aging, and this
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event has a major impact on brain function. The dysfunction
of the vascular system is an integral part of AD etiology and
pathophysiology. Aβ has been thought to be mainly generated
in the brain itself, but accumulating evidence suggests that Aβ

is generated in both the brain and peripheral tissues (Bu et al.,
2018). This underscores the relevance of the dysfunction of the
vascular system, including lymphatic vessels, in AD.

In the future, to deeply understand brain aging/pathological
conditions, it is necessary to elucidate further the progression
mechanism of vascular aging by clarifying which linkage
breakdown between the vascular system and neural system
causes preferential degradation of any capillaries in any tissue.
Also, by applying these basic findings, it is expected to lead
to the establishment of new therapeutic concepts, such as stem

cell therapy, and the development of the prevention of neural
diseases/new therapeutics through the mechanism of inhibiting
vascular aging.
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