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SUMMARY

The juvenile phase is characterized by continuously progressing physiological processes such as

growth and maturation, which are accompanied by transitions in gene expression. The contribution

of transcriptome dynamics to the establishment of juvenile properties remains unclear. Here, we

investigated alternative splicing (AS) events in postnatal growth and elucidated the landscape of

age-dependent alternative splicing (ADAS) in C57BL/6 mice. Our analysis of ADAS in the cerebral

cortex, cardiomyocytes, and hepatocytes revealed numerous juvenile-specific splicing isoforms that

shape the juvenile transcriptome, which in turn functions as a basis for the highly anabolic status of

juvenile cells.Mechanistically, the juvenile-expressed splicing factor Srsf7mediates ADAS, as exempli-

fied by switching from juvenile to adult forms of anabolism-associated genes Eif4a2 and Rbm7.

Suppression of Srsf7 results in ‘‘fast-forwarding’’ of this transcriptome transition, causing impaired

anabolism and growth in mice. Thus, juvenile-specific AS is indispensable for the anabolic state of

juveniles and differentiates juveniles from adults.
1Molecular Neuroscience
Research Center (MNRC),
Shiga University of Medical
Science, Seta Tsukinowa-cho,
Otsu, Shiga 520-2192, Japan

2Research Center for Animal
Life Science (RCALS), Shiga
University of Medical Science,
Seta Tsukinowa-cho, Otsu,
Shiga 520-2192, Japan

3Department of Pediatrics,
Shiga University of Medical
Science, Seta Tsukinowa-cho,
Otsu, Shiga 520-2192, Japan

4These authors contributed
equally

5Lead Contact

*Correspondence:
morim@belle.shiga-med.ac.
jp

https://doi.org/10.1016/j.isci.
2020.100929
INTRODUCTION

Organisms undergo age-dependent alterations in body size and function as they grow into adults. One of

themechanisms regulating this process is an age-dependent transition in gene expression that is regulated

at the transcriptional and post-transcriptional levels. Transcription is a process of mRNA synthesis

controlled quantitatively by factors such as RNA polymerases, transcription factors, and chromatin

modifiers. Transcription is also controlled qualitatively by the use of alternative transcription start sites

and alternative polyadenylation. The post-transcriptional processing includes alternative splicing (AS),

(de)stabilization, RNA modifications such as RNA methylation (Zhao et al., 2016), RNA editing, interaction

with RNA-binding protein (RBP, Anders et al., 2012) and microRNA, transportation, and

compartmentalization.

AS increases transcript diversity. Following the discovery of splicing (Berget et al., 1977; Chow et al., 1977),

AS was identified as a system that generated multiple variant mRNAs from one gene (Alt et al., 1980; Early

et al., 1980). This process enables a limited number of genes to generate more molecules. AS thus expands

the proteome (Nilsen and Graveley, 2010) and is relevant to evolution (Barbosa-Morais et al., 2012). AS

occurs in tissue-specific patterns (Blekhman et al., 2010; Ellis et al., 2012) and cell-type-specific patterns

(e.g., embryonic stem cells [Han et al., 2013; Salomonis et al., 2010]), suggesting its role in differentiating

cellular contexts. AS has broad biological implications in synapse formation (Ule et al., 2005), sex determi-

nation (Baker, 1989), the epithelial-mesenchymal transition (Warzecha et al., 2009), etc. AS is also impli-

cated in pathogenesis (Cieply and Carstens, 2015; Tazi et al., 2009) and cancer (Venables et al., 2009).

Despite the multifaceted nature of AS, its age dependency is not well understood. Here, we investigate

age-dependent alternative splicing (ADAS) in the context of postnatal organ growth in mice.

The postnatal growth phase is a process in which an animal incorporates nutrition for anabolism, thus

growing in size. In addition, the functions of the organs mature during the process of growing into an adult.

For example, the brain undergoes striking functional enhancement via functional plasticity (Hensch, 2005).

Thus, juvenile animals possess distinct physiological characteristics, which we call ‘‘juvenile properties’’

(Jam et al., 2018; Tano et al., 2019). Despite its particular physiological traits, the juvenile phase has not

been studied as rigorously as the fetal development or adult phases. Thus, to explore these juvenile
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properties, we previously performed a comprehensive transcriptome analysis in mice of different ages and

identified juvenility-associated genes (JAGs, Jam et al., 2018) and juvenility-associated long noncoding

RNAs (JALNCs, Tano et al., 2019) as molecular building blocks of juvenile properties. These analyses

revealed that the juvenile phase is characterized by a specific gene expression profile (hereafter, juvenile

transcriptome) quite distinct from that of adults.

Our analyses of the juvenile transcriptome identified AS as an important mechanism regulating juvenile

properties (Jam et al., 2018), although the details remained unaddressed. Here, we show that juveniles

undergo global AS in an age-dependent manner that shapes the juvenile transcriptome. AS is the differ-

ential removal of introns from pre-mRNA and is observed in 92%–94% of multi-exon genes (Pan et al.,

2008; Wang et al., 2008). Splicing is carried out in spliceosomes that consist of five small nuclear ribonucleo-

protein particles (snRNPs), U1, U2, U4/U6, and U5; these snRNPs are the major components of the spliceo-

some, and numerous auxiliary proteins are also present (Chen and Manley, 2009). Spliceosome assembly is

a highly dynamic process that starts with the binding of SR proteins to exonic splicing enhancer (ESE); these

proteins stabilize the interaction of the U1 snRNP to the 50 splicing site (50 ss) of the intron via base pairing

with snRNA1 (Long and Caceres, 2009). The SR proteins also recruit the U2AF complex and U2 snRNP to the

30 ss (Chen and Manley, 2009; Nilsen and Graveley, 2010). Further incorporation of the U4/U6–U5 tri-snRNP

leads to the formation of a complex that contains all subunits, followed by extensive conformational

changes, resulting in the formation of the catalytically active spliceosome.

The Srsf7 splicing factor belongs to the SR protein family, which is encoded by nine genes in humans: SRSF1

(chr17), SRSF2 (chr17), SRSF3 (chr6), SRSF4 (chr1), SRSF5 (chr14), SRSF6 (chr20), SRSF7 (chr2), SRSF9 (chr12),

SRSF11 (chr1, Shepard and Hertel, 2009). The SR splicing factors possess an N-terminal RNA-binding

domain (RBD) and a C-terminal RS domain that is enriched with arginine-serine dipeptides. The RS domain

mediates protein-protein interactions that are required for spliceosome assembly (Kohtz et al., 1994;

Wu and Maniatis, 1993). Srsf7 additionally possesses a zinc-affinity domain between the RBD and the RS

domain (Jeong, 2017). It was also reported that a binding location relative to the 50 ss affects the splicing

regulation function of Srsf7 (Erkelenz et al., 2013). Srsf7 transports herpes simplex virus 1mRNAs (Escudero-

Paunetto et al., 2010) and is involved in processing HIV-1 mRNA (Valente et al., 2009), but the biological

roles of Srsf7 remain largely unknown.

Here, we describe ADAS in postnatally growing mouse organs as a model and investigate a role for Srsf7 in

the regulation of ADAS. Our analysis provides a landscape for ADAS and clarifies a role for Srsf7 in ADAS

and the establishment of the juvenile transcriptome.
RESULTS

Age-Dependent Alternative Splicing in Growing Organ Transcriptomes

To comprehensively address ADAS, we performed a transcriptome analysis with mouse organs and

analyzed AS events in a transcriptome-wide manner. We performed RNA sequencing (RNA-seq) analysis

with the cerebral cortex (CC) of C57BL/6N mice in the juvenile and adult phases. We utilized postnatal

day 1 (P1) and P14 as juvenile phases and P56 as an adult phase. We combined the data from the CC

with our previously publicized dataset of cardiomyocytes (CMs) and hepatocytes (Heps) from mice of juve-

nile (P1 and P7) and adult (P56) phases (Jam et al., 2018). We investigated AS events among the different

ages using the mixture-of-isoforms (MISO) model (Katz et al., 2010) and comprehensively identified AS

events that occurred in a phase-specific manner as ADAS events (Figure 1A). This analysis identified

numerous ADAS events, as examples, in Tpm2, Ndrg2, and Fn1 (Figure 1B). Tpm2 underwent exon skip-

ping in which an exon was included in a juvenile-specific manner (juvenile-exon inclusion). In contrast,

Ndrg2 underwent exon skipping in an adult-specific manner. Fn1 underwent multiple AS events that

consisted of mutually exclusive exon usage, with distinct juvenile and adult exon inclusions.

The analysis of AS events identified 1,264, 408 and 371 total ADAS events in the CC, CMs, and Heps,

respectively (Figure 1C). Among the five types of ADAS (exon skipping, intron retention, mutually exclusive

exons, 50 or 30 alternative ss), exon skipping was the most frequent (Figure 1D). There were two types of

exon skipping: juvenile- and adult-enriched exon inclusion. Adult-enriched exon inclusion was more

frequent (533 events) than juvenile-enriched exon inclusion (238 events, Figure 1E). To determine the bio-

logical relevance of ADAS, a Gene Ontology (GO) analysis was performed for the differentially spliced

genes at the juvenile and adult phases (‘‘ADAS-target genes’’). The ADAS-target genes were significantly
2 iScience 23, 100929, March 27, 2020
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Figure 1. Comprehensive Identification of Age-Dependent Alternative Splicing (ADAS) in Organ Growth

(A) Schematic of the age-dependent alternative splicing (ADAS) analysis in this study. MISO, mixture of isoforms.

(B) Representative examples of ADAS events in postnatal cardiomyocytes. Numbers shown to the left of the read patterns

indicate FPKM values. Exon information was shown below.

(C) Total number of ADAS events in cerebral cortex (CC), cardiomyocytes (CMs), and hepatocytes (Heps). The alternative

splicing (AS) events were analyzed by MISO, and AS events with Bayes factors > 101/2 were counted.

(D) Numbers of each AS pattern in postnatally growing mouse organs.

(E) Frequency of juvenile- or adult-enriched specific exon inclusions. The frequency was compared between P1 and P56 or

between P7 (CMs and Heps)/P14 (CC) and P56.

See also Figure S1.
associated with ‘‘nervous system development’’ and ‘‘axonogenesis’’ in the CC, ‘‘cell-cell adhesion’’ and

‘‘muscle contraction’’ in CMs, and ‘‘mitochondrial fission’’ and ‘‘extracellular exosome’’ in Heps. These

results indicate that the ADAS-target genes are engaged in the biologically relevant functions (Figure S1).

Thus, we comprehensively determined the ADAS events in postnatal growth and identified the juvenile-

specific splicing isoforms.
Juvenile Expression of Srsf7

We next explored how the ADAS events were regulated. We hypothesized that juvenile-specific AS was

mediated by juvenile-specifically expressed splicing factor(s) (SFs), so we tested whether SFs were

expressed in a juvenile-specific manner. We investigated 59 SFs that were curated manually (Giulietti

et al., 2013). Unexpectedly, most of the SF genes were expressedmore highly in juvenile tissues throughout
iScience 23, 100929, March 27, 2020 3



the CC, CMs, and Heps, suggesting their functional relevance in juveniles (Figure S2). Among the juvenile-

expressed SFs, we narrowed down the candidate genes for functional analyses by choosing those with

robust and at least 2-fold higher expression than in adult in the three tissues. Among the seven genes,

Ybx1, hnRNPA0, hnRNPA1, hnRNPDL, Sfpq, Srsf2, and Srsf7, we focused on Srsf7with a relatively unknown

biological function. We will analyze the remaining six genes in a future work. Srsf7 exhibited prominent

juvenile-specific expression with high expression levels in juveniles in all three cell types (Figure 2A). This

juvenile-predominant expression was validated with quantitative PCR (Figure 2B). Our previous analysis

revealed that Srsf7 was suppressed in cellular juvenescence loss induced by depletion of the JALNC

Gm14230 (Tano et al., 2019). Immunocytochemistry revealed that Srsf7 was localized predominantly to

the nucleoplasm in Neuro2a mouse neuroblastoma cells at a lower cell density (Figures 2C and 2D). At a

higher cell density, Srsf7 expression was suppressed (Figures 2C and 2D). This cell-density-dependent

expression suggests a role for Srsf7 in the regulation of cellular growth.

We next asked whether Srsf7 expression depends on cellular juvenescence. Zeocin, a genotoxic agent,

induces loss of cellular juvenescence in NIH3T3 cells (Tano et al., 2019). We applied this method to Neuro2a

cells and observed highly efficient induction of cellular senescence, as indicated by senescence-associated

b-galactosidase (SA-b-gal) activity and extension of the cytoplasm (Serrano et al., 1997) (Figures 2E and 2F).

Srsf7 expression was significantly suppressed in the senescent cells (Figures 2G and 2H), and this result was

corroborated by western blot analysis (Figures 2I and S2B). We also analyzed the juvenescence-dependent

expression of Srsf7 in another model for cellular senescence. Cellular senescence can be induced by onco-

genic genes such as Ras (Serrano et al., 1997), BRAF (Wajapeyee et al., 2008), Akt (Chen et al., 2005), and

E2F (Denchi et al., 2005). The forced expression of RasV12 by doxycycline-inducible manner provoked

cellular senescence, which was evidenced by changes in cell morphology and impaired cell growth (Figures

S2C). The RasV12-induced cellular senescence was accompanied by suppression of Srsf7 and enhancement

of proteins associated with cellular senescence (Figures S2C–S2E). Thus, Srsf7 is more highly expressed in

juvenile organs and juvenescent cells.
Depletion of Srsf7 Causes Loss of Cellular Juvenescence and Metabolic Dysfunction

To study the role of Srsf7 in cellular juvenescence, we tested the influence of Srsf7 depletion in Neuro2a

cells. siRNA-mediated knockdown of Srsf7 (Figure 3A) significantly suppressed cell growth (Figures 3B

and 3C), indicating that Srsf7 was essential for cell growth. The Srsf7-depleted cells were refractory to

retinoic acid-induced neural differentiation, indicating that the Srsf7-depleted cells lost their ability

to differentiate (Figure 3D). The earlier findings that Srsf7 was expressed in juvenile cells prompted us to

test whether Srsf7 is required for cellular juvenescence. Srsf7 knockdown led to a profound increase in

positive staining in an SA-b-gal assay (Figures 3E and 3F) and the expression of the senescence-associated

proteins p16, p27, and gH2ax (Figures 3G and S3A). These results indicate that Srsf7 is essential for cellular

juvenescence. We next assessed a role for Srsf7 in counteracting the cellular senescence. The Neuro2a-

RasV12 cells were transfected with Srsf7 or control empty plasmid, followed by doxycycline treatment to

induce the cellular senescence. The forced expression of Srsf7 suppressed the morphological changes

of the cells, in comparison with the control plasmid-transfected cells (Figures S3B and S3C).

To analyze the mechanism of growth regulation by Srsf7, we assessed the expression of metabolism-associated

proteins. Srsf7 depletion caused decreased phosphorylation of the ribosomal protein S6 (Ser240/244), suggest-

ing impaired protein synthesis (Figure 3G). Additionally, Srsf7 knockdown induced form II of Lc3, a hallmark of

autophagy, suggesting that Srsf7 depletion caused energy starvation. The findings implied that Srsf7 is required

for cell anabolism. To assess themetabolic functionof Srsf7,wemeasuredcellularmetabolismwith a flux analyzer

and revealed that Srsf7 depletion led to a decreased oxygen consumption rate (OCR, Figure 3H) with minor ef-

fects on extracellular acidification rate (ECAR Figure 3I), suggesting that mitochondrial function was impaired.

Analysis of the OCR to ECAR ratio showed Srsf7 depletion compromised oxidative phosphorylation (Figure 3J),

causing a shift to glycolysis (Figure 3K).We next addressed how the Srsf7 depletion led to themetabolic shift to-

ward the compromised oxidative phosphorylation. We first assessed mitochondrial quantity by measuring the

amountofmitochondrialgenomeDNA.Thisanalysisdidnot showasignificantchange in themitochondrialquan-

tityuponSrsf7depletion (FigureS3D). TheexpressionofmitochondrialproteinCox1didnotalterapparently (Fig-

ure 3G). To investigate the potential mechanism behind the metabolic shift, we established Srsf7-knockout (KO)

Neuro2a cell lines via CRISPR technology and performed transcriptome analysis. The RNA-seq analysis revealed

upregulation of pyruvate dehydrogenase kinase (Pdk1) and Pdk2 in the Srsf7-KO cells. These findings were vali-

dated via qPCR (Figure S3E). Pdk proteins direct the metabolic flow from the oxidative phosphorylation to
4 iScience 23, 100929, March 27, 2020



A

E F G H I

B

C

D

Figure 2. Srsf7 Is Expressed in Juvenile Organs and Juvenescent Cells

(A) IGV views of Srsf7 expression in the cerebral cortex (CC), cardiomyocytes (CMs), and hepatocytes (Heps) at juvenile phase postnatal day 1 (P1), P7 (CMs

and Heps), or P14 (CC) and adult phase P56. Numbers next to the read patterns (0, 100, and 600) indicate FPKM values.

(B) qPCR analysis of Srsf7 mRNA expression in CC, CMs, and Heps. Data were normalized to Polr2a.

(C) Immunofluorescent analysis of Srsf7 and Vimentin in Neuro2a cells at low and high densities. Scale bar, 50 mm.

(D) Frequency of Srsf7-expressing cells among total cells. *** p < 0.001. n = 266 and 243 cells. Data are the means G standard deviations from three

independent experiments.

(E) Staining of senescence-associated b-galactosidase (SA-b-gal) activity in cells treated with zeocin at 80 mg/mL for 96 h. Scale bar, 50 mm.

(F) Frequency of cells positive for SA-b-gal staining. *** p < 0.001. n = 365 and 158 cells. Data are the means G standard deviations from three independent

experiments.

(G) Immunofluorescent analysis of Srsf7 in Neuro2a cells with or without zeocin treatment. Scale bar, 50 mm.

(H) Frequency of Srsf7-expressing cells among total cells. *** p < 0.001. n = 465 and 291 cells. Data are the means G standard deviations from three

independent experiments.

(I) Western blot analysis with Neuro2a cells treated with zeocin. The senescence marker proteins gH2ax and p16 were increased in zeocin-treated cells. Actb

was used as a loading control.

*p < 0.05 and ***p < 0.001, Student’s t test. Data are represented as the means G standard deviations. See also Figure S2.
glycolysis (Kimet al., 2006; Kluza et al., 2012; Konet al., 2017). The enhancement of Pdk1was also observed at the

protein level in the cells depleted for Srsf7 (Figure 3G). Together, Srsf7 depletion causes the glycolysis-predom-

inant state that is accompaniedwith the upregulationof Pdk. Thus, Srsf7 is essential for cellular juvenescence and

mediates cellular anabolism.
iScience 23, 100929, March 27, 2020 5
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Figure 3. Srsf7 Is Essential for Cellular Juvenescence

(A) Srsf7 knockdown efficiency was analyzed by qPCR of Srsf7 in Neuro2a cells 48 h after transfection with control siRNA or

Srsf7 siRNA. Data were normalized to Actb.

(B) Appearance of Neuro2a cells 72 h after transfection with control siRNA or Srsf7 siRNA. Scale bar, 100 mm.

(C) Number of cells per field 72 h after transfection with control siRNA or Srsf7 siRNA.

(D) Appearance of Neuro2a cells treated with 20 mM retinoic acid for 48 h to induce neural differentiation. Srsf7-depleted

cells were refractory to differentiation induction. Scale bar, 100 mm.

(E) Staining of senescence-associated b-galactosidase (SA-b-gal) activity in Neuro2a cells 72 h after transfection with

control siRNA or Srsf7 siRNA. Scale bar, 100 mm.

(F) Frequency of cells positive for SA-b-gal staining among total cells. *** p < 0.001. n = 147 and 184 cells. Data are the

means G standard deviations from three independent experiments.

(G) Western blot analysis with Neuro2 cells 72 h after transfection of control siRNA or Srsf7 siRNA. The senescence marker

proteins p16, p27, and gH2ax were increased in Srsf7-depleted cells. Tubulin was used as a loading control.

(H–K) Analysis of cell metabolism with a flux analyzer in Neuro2a cells 48 h after transfection of control siRNA or Srsf7

siRNA. (H) Oxygen consumption rate (OCR) and (I) extracellular acidification rate (ECAR) were measured at baseline and

6 iScience 23, 100929, March 27, 2020



Figure 3. Continued

under stress conditions in which cells were treated with oligomycin and FCCP. (J) OCR to ECAR ratio at the baseline

and stress conditions. (K) Energy phenotype profile of the cells transfected with control siRNA or Srsf7 siRNA.

* p < 0.05, ** p < 0.01, and *** p < 0.001, Student’s t test. Data are represented as the means G standard deviations. See

also Figure S3.
Srsf7 Regulates Growth and JAGs in Mice

To assess the role of Srsf7 in ADAS in mice, we sought to analyze Srsf7-knockout (KO) mice. Using CRISPR-

Cas9 genome editing (Cong et al., 2013; Inui et al., 2015; Mali et al., 2013), we designed a guide RNA that

introduced a double-strand break in the proximal region downstream of the initiating codon in Srsf7 (Fig-

ure S4A). This break resulted in an indel that caused a frameshift (fs) mutation (Figure S4B). Analysis of new-

borns revealed that none had homozygous mutations, implying that the null mutation caused embryonic

lethality. Analysis of fetuses at embryonic day 7.5 (E7.5) revealed that 18 fetuses (27.6%) were wild-type

(WT, Srsf7WT/WT), 30 (46.1%) were heterozygous mutants (Srsf7WT/fs), and 17 (26.1%) were absorbed

embryos, hampering the determination of a genotype (Figure S4C). The absence of a viable homozygous

mutant at E7.5 suggested early embryonic lethality. KO of Srsf3 (also known as SRp20), a gene that encodes

the SF with the closest similarity to Srsf7 (Blanco and Bernabéu, 2012; Cavaloc et al., 1999), causes develop-

mental failure at the blastocyst stage (Jumaa et al., 1999).We therefore analyzedwhether Srsf7-null embryos

had defects at the blastocyst stage. In vitro fertilization was performed with Srsf7 heterozygous mutant

sperm and ova to analyze development into morulae and blastocysts. Srsf7-homozygous KO embryos

(Srsf7fs/fs) successfully developed into blastocysts, clarifying that the embryonic lethality of Srsf7-KO mice

occurred after the blastocyst stage and during the implantation stage (Figures S4D–S4F). Taken together,

these results show that Srsf7 is indispensable for the implantation stage of mouse development.

The embryonic lethality hampered the analysis of homozygous KOmice. Heterozygous Srsf7-KOmice were

viable and fertile, but they exhibited impaired body growth. Both male and female Srsf7WT/fs mice

exhibited lower body weight than the WT controls (Figures 4A and 4B), indicating that Srsf7 is necessary

for body growth in mice. The significant difference of body weight was observed also in the neonatal phase

(Figure S5A). To gain an insight into a role for Srsf7 in the protein synthesis in vivo, we investigated the

expression of proteins associated with the activity of the protein synthesis. The expression of phosphory-

lated S6 and phosphorylated 4E-BP1 was suppressed in the Srsf7 mutant tissues (Figures S5B and S5C).

These findings implied that Srsf7 might play a role in the regulation of protein synthesis also in vivo. To

assess the machinery underlying the growth impairment of Srsf7 mutant mice, we compared the gene

expression profiles of WT and Srsf7 mutants via RNA-seq (Figure 4C).

Heatmap analysis revealed that a subset of genes (1,716 genes) was suppressed by the Srsf7 mutation

throughout the CC, CMs, and Heps (Figure 4D). The subset included numerous JAGs and translation-asso-

ciated genes (Figure 4D). The GO analysis revealed that this gene subset was associated with ‘‘translation’’

(p < 10�33) and ‘‘ribosome’’ (p < 10�39) (Figure 4E). These findings suggested that translation was dysregu-

lated in the Srsf7mutant mice. Additionally, the Srsf7mutation showed a significantly more profound effect

on the JAGs than on constitutively expressed genes, demonstrating that Srsf7 is indispensable for the

expression of JAGs (Figure 4F). Among the JAGs, the expression of Igf2 was suppressed significantly in

CMs and Heps (Figure S5D). Igf2 encodes a peptide that functions as a potent enhancer of body growth

(DeChiara et al., 1990; Sun et al., 1997). The Igf2 suppression was observed also at the protein level in

Srsf7mutant hearts and livers (Figure S5E). We also addressed physiological consequences of the aberrant

ADAS in the Srsf7mutant mice. The GO analysis in the Srsf7mutant CC revealed that genes associated with

myelination were affected significantly (Figures S6A), revealing the downregulation of myelin sheath-asso-

ciated genes (Figure S6B). Immunostaining of myelin basic protein (MBP) revealed poorer myelination in

the Srsf7mutant compared withWT (Figures S6C and S6D), whereas the neuronal formation was unaffected

(Figures S6E and S6F). Thus, the Srsf7mutant mice showed the slight impairment of myelination in the CC.

Together, the Srsf7mutation causes physiological deteriorations in the body growth andmyelination that is

accompanied by compromised expression of genes associated with translation and JAGs in mice.
Srsf7 Mediates ADAS

Wenext evaluatedADAS in the Srsf7mutantmice.MISO analysis revealed significantly (Bayes factor > 101/2) and

recurrently altered AS events in the Srsf7 mutant mice (Figure 5A). The cutoff we used for determining true AS

events almost completely excluded background or ‘‘noise’’ AS events, as shown by the fact that comparisons
iScience 23, 100929, March 27, 2020 7
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Figure 4. Srsf7 Regulates Growth and JAGs in Mice

(A) Thebodyweights ofWTand Srsf7-heterozygousmutantmice (numbers ofmice analyzed:WTmale, 12;mutantmale, 19;WT female, 17;mutant female, 14).

(B) Appearances of WT and Srsf7 mutant mice at age 2 weeks.

(C) A schematic describing the RNA-seq analysis with CC, CMs, and Heps isolated from WT and Srsf7 mutant mice. Two Srsf7 mutant mice and one WT

littermate control were subjected to the RNA-seq analysis.

8 iScience 23, 100929, March 27, 2020



Figure 4. Continued

(D) Heatmap analysis of the RNA-seq results in CC, CMs, and Heps ofWT and Srsf7mutant mice. The cluster of genes with a tendency to be downregulated in

the three organs is magnified to the right. A partial list of JAGs and translation-associated genes included in the cluster is shown.

(E) Gene Ontology (GO) analysis of the Srsf7mutant-suppressed cluster. The biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways significantly associated with the cluster are shown.

(F) Frequencies of juvenility-associated genes (JAGs) and constitutively expressed genes among the Srsf7WT/fs-suppressed genes. The Srsf7mutation affects

JAGs more strongly than constitutively expressed genes.

* p < 0.05 and *** p < 0.001, Student’s t test. Data are represented as the means G standard deviations. See also Figures S4–S6.
among WT mice showed few AS events (‘‘Background AS events’’ in Figure 5A). We performed GO analysis to

predict thebiological functions associatedwith themis-splicedgenes, and the results showed that, in addition to

the expected ‘‘alternative splicing’’ (10�153) (Figure 5B), functions such as ‘‘phosphoprotein’’ (10�110) and

‘‘acetylation’’ (10�46) were highly significantly enriched. These findings indicate that Srsf7 exerts its influence

through these enriched functions. We next asked whether Srsf7 mediated the ADAS that was observed earlier

in this study. We investigated an overlap between the ADAS-target genes and the genes undergoing Srsf7-

dependent AS. Overlaps of 33.1%, 41.8%, and 43.5% were observed between the ADAS-target genes and

Srsf7-spliced genes in the CC, CMs, and Heps with statistical significance of 2 3 10�102, 3 3 10�91, and 8 3

10�71, respectively (Figure 5C). These observations indicate that Srsf7 mediates a considerable portion of

ADAS, thus establishing a role for Srsf7 in the age-dependent transition of the transcriptome.

Srsf7 Mediates ADAS in Eif4a2 and Rbm7

We next sought to describe Srsf7-mediated ADAS in a gene-specific manner. We focused on the Eif4a2 and

Rbm7 mRNAs, which underwent Srsf7-dependent AS at high significance (Bayes factor > 101/2). Eif4a2

underwent ADAS in which exon 11 (E11) was included in the juvenile form and excluded from the adult

form throughout the CC, CMs, and Heps (Figure 6A). Because of a premature stop codon in E11, the juve-

nile form was shortened and lacked one-third of the C-terminal RNA helicase domain (Figure 6B), losing

two beta-strands and two alpha-helixes of the RNA helicase domain compared with the adult form (Fig-

ure S5). However, E11 was skipped in Srsf7 mutant organs even in juveniles, leading to the expression of

the adult form of Eif4a2 (Figure 6C). This finding was corroborated by qPCR, which distinguishably

measured the two isoforms (Figure 6D).

Rbm7, a gene encoding an RBP associated with snoRNA biogenesis, underwent ADAS in which E2 was

included in the juvenile form and excluded from the adult form throughout the CC, CMs, and Heps (Fig-

ure 6E). Because of a stop codon in E2, the juvenile form of Rbm7 has an open reading frame of 39 amino

acids (aa) in length, which is considerably shorter than the adult form, which consists of 265 aa (Figure 6F).

Exon 2 was skipped in Srsf7 mutant organs even in juveniles, thus yielding the adult form (Figure 6G). This

finding was corroborated by qPCR (Figure 6H). Thus, our analysis revealed that Srsf7 mediates the ADAS of

Eif4a2 and Rbm7, causing switching from juvenile to adult isoforms.

Srsf7 Is Responsible for ADAS and Establishes the Juvenile Transcriptome

To assess the regulation of AS by Srsf7 more directly, we established an in vitro experimental platform for

the analysis of Srsf7-mediated AS. We cloned the genomic sequences of Eif4a2 and Rbm7 and constructed

minigene plasmids. The AS of Eif4a2 and Rbm7 were assessed in the Srsf7-KO Neuro2a cell lines (Fig-

ure 7A). The minigene assays revealed that Srsf7-KO causes the switching of isoforms from juvenile to adult

for both Eif4a2 (Figure 7B) and Rbm7 (Figure 7C). Furthermore, RNA immunoprecipitation (RIP)-qPCR

analysis revealed the binding of Srsf7 protein to the Eif4a2 RNA and Rbm7 RNA (Figure 7D). These findings

indicate that the Srsf7 protein directly mediates the AS of Eif4a2 and Rbm7.

Thus, Srsf7 mediates the ADAS of the numerous transcripts including Eif4a2 and Rbm7. The influences of

Srsf7mutation was observed for the splicing of the significant number of genes that were also regulated by

ADAS. ADAS enables higher anabolic potentials in juvenile animals through enhancing JAGs and transla-

tion-associated genes.

DISCUSSION

The age dependency of AS has not been well elucidated, and implications of ADAS for physiology and

pathogenesis remain obscure. Here, we present a comprehensive view of ADAS during postnatal growth

in a mouse model. Srsf7 mediates the ADAS of numerous genes including Eif4a2 and Rbm7. Srsf7
iScience 23, 100929, March 27, 2020 9
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Figure 5. Srsf7 Mediates ADAS in Mice

(A) Number of AS events detected in Srsf7 mutant mice in comparison with WT mice (right half, ‘‘Mis-splicing events in

Srsf7 mutants’’). Comparisons were also made between WT mice to show the background noise levels (left half,

‘‘Background AS events’’).

(B) Gene Ontology (GO) analysis of the genes that were mis-spliced in Srsf7mutant mice. ‘‘Up keywords’’ and ‘‘Biological

processes’’ significantly associated with the mis-spliced genes are indicated.

(C) Venn diagrams to show overlaps between the ADAS-target genes and the genes mis-spliced in the Srsf7 mutant.
contributes to the establishment of the juvenile transcriptome, which is characterized by the expression of

JAGs and translation-associated genes, thus underlying the anabolic status of juvenile animals (Figure 7E).

Although AS has been investigated in terms of tissue- or cell-type specificity, its age dependency has not

been comprehensively studied. The juvenile phase is characterized by distinct physiological features, such

as growth and maturation, and by distinct gene expression profiles enriched in JAGs (Jam et al., 2018). This

ADAS analysis revealed a previously undefined landscape of AS events, unmasking the regulatory layer of

gene expression underlying the postnatal growth phase. Our findings indicate that the postnatal growth

phase is underlain by splicing-based modifications of the transcriptome, which account for the anabolic

status of juvenile animals and the expression of JAGs and translation-associated genes, thus contributing

to juvenile properties.
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Figure 6. Srsf7 Mediates ADAS of Eif4a2 and Rbm7

(A) Eif4a2 mRNA expression pattern in the juvenile and adult phases. Exon 11 (E11) is predominantly included in the

juvenile phase compared with the adult phase.

(B) Schematic of the splicing isoforms of Eif4a2. E11 is included in the juvenile isoform and not in the adult isoform. E11

contains the alternative stop codon, thus generating a shorter protein.

(C) Eif4a2 mRNA expression patterns in WT and Srsf7 mutant organs. E11 is included in WT but not in Srsf7 mutants. The

Srsf7 mutants thus express the adult form despite the mice being juvenile.

(D) qPCR analysis of the Eif4a2 juvenile and adult isoforms in WT and Srsf7 mutant mouse tissues (n = 3). Data were

normalized to Tubb5.

(E) Rbm7 mRNA expression patterns in the juvenile and adult phases. E2 is more frequently included in juveniles than in

adults.
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Figure 6. Continued

(F) Schematic of the splicing isoforms of Rbm7. E2 is included in the juvenile isoform and not in the adult isoform. E2

contains the alternative stop codon that terminates translation.

(G) Rbm7 mRNA expression pattern in WT and Srsf7 mutant organs. E2 is included in WT but not in Srsf7 mutants. The

Srsf7 mutants thus express the adult form despite the mice being juvenile.

(H) qPCR analysis of Rbm7 juvenile and adult isoforms inWT and Srsf7mutant mouse tissues (n = 3). Data were normalized

to Tubb5.

Data are represented as the means G standard deviations. See also Figure S7.
Cellular juvenescence is characterized by the cellular capacities for growth, maturation, differentiation,

anabolic metabolism, and resistance to premature senescence (Tano et al., 2019). Cellular juvenescence

is lost under suppression of the JALNC Gm14230 (Tano et al., 2019). Here, we showed that Srsf7 depletion

also led to a loss of cellular juvenescence, in that cells exhibited impaired growth, differentiation, anabo-

lism, and resistance to premature senescence. As evidenced by experiments in cells and mice, Srsf7 deple-

tion led to decreased phosphorylation of S6, indicating suppressed protein synthesis. Thus, Srsf7 regulates

anabolism through protein synthesis both in vitro and in vivo.

The Srsf7 protein showed nuclear localization, consistent with a splicing function. The nuclear expression of

Srsf7 was lost at higher density, zeocin treatment, and RasV12-induced senescence. Srsf7 was not observed

to translocate out of the nucleus, suggesting that the Srsf7 protein is regulated by its expression level and

not by subcellular localization in the contexts we examined. The cell-density-dependent expression of the

Srsf7 protein implied that Srsf7 may control anabolism in response to cell density. Srsf7 expression was also

dependent on cellular juvenescence and was lost in RasV12-induced cellular senescence. The genotoxicity

of zeocin may induce cell-cycle arrest, and it may also induce loss of cellular juvenescence through the

suppression of Srsf7.

The homozygous null mutation of Srsf7 caused early embryonic lethality, indicating its essentiality in the

implantation stage. Homozygous mutations of Srsf3, the gene with the greatest similarity to Srsf7, cause

defects in blastocyst formation before the implantation stage (Jumaa et al., 1999). This discrepancy

demonstrates the non-redundant roles of Srsf3 and Srsf7 in blastocyst formation and the implantation

stage, respectively.

Although our previous study found that the postnatal growth phase was characterized by age-dependent

alteration of the transcriptome, the functional relevance of AS has not been elucidated (Jam et al., 2018).

Not only did the juvenile transcriptome undergo extensive genome-wide AS, but we also identified Srsf7

as a crucial factor for its regulation. Srsf7 mutation caused erroneous ADAS that resulted in premature loss

of JAGs and translation-associated genes. The ADAS events were ‘‘fast-forwarded,’’ and premature switching

from juvenile to adult isoforms took place. This effect was recapitulated by in vitro experiments in Neuro2a

cells with null mutations of Srsf7, where the juvenile Eif4a2 and Rbm7 isoforms were switched to the adult

isoforms prematurely.

We demonstrated that Eif4a2 and Rbm7 are direct targets of Srsf7. Srsf7 mediates the inclusion of E11 that

contains the alternative stop codon; thus, the juvenile isoform lacks the part of the RNA helicase domain

that is crucial for microRNA-mediated translational suppression. Eif4a2 is an ATP-dependent RNA helicase

(Jackson et al., 2010) that is essential for microRNA-mediated translational repression (Meijer et al., 2013).

Thus, the shortening of the RNA helicase domain is considered to cause dysregulation of microRNA-medi-

ated translational repression, leading to increased protein expression. microRNA-mediated regulation of

growth is also regulated at the level of microRNA biogenesis, which is enhanced by Hippo signaling (Mori

et al., 2014). Srsf7-mediated AS of Eif4a2 may function as a new regulatory layer of microRNA-mediated

growth control. Rbm7, together with ZCCHC8 and hMTR4, constitutes the nuclear exosome targeting

(NEXT) complex that directs a subset of RNAs, including snoRNA, toward exosomal degradation (Fan

et al., 2017; Kufel and Grzechnik, 2019; Lubas et al., 2015; Ogami et al., 2018). Srsf7 mediates the splicing

of the juvenile isoform that includes E2 and a premature stop codon, thus expressing a considerably shorter

isoform lacking a part of the RNA recognition motif. The juvenile Rbm7 isoform spares snoRNAs from

degradation, promoting the translation process.

Our findings clarified previously unreported roles for ADAS in the establishment of the juvenile transcrip-

tome and the anabolic status of juvenile animals. Our analysis suggested a more quantitative analysis for
12 iScience 23, 100929, March 27, 2020
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Figure 7. Srsf7 Mediates Isoform Switching of Eif4a2 and Rbm7

(A) Western blot analysis for Srsf7 in WT and Srsf7-KO Neuro2a cell lines. Gapdh was analyzed for the loading control.

(B) Minigene assay with the Eif4a2 gene construct. The scheme above shows the plasmid constructed to express exons

10–12 (E10–E12) of mouse Eif4a2. The primers used to detect the splicing products are indicated with arrows, and the

RT-PCR results are shown below. Srsf7-KO induces switching of isoforms from juvenile to adult.

(C) Minigene assay with the Rbm7 gene construct. The scheme above shows the plasmid constructed to express E1–E3 of

mouse Rbm7. The primers used to detect the splicing products are indicated with arrows, and the RT-PCR results are

shown below. Srsf7-KO induces switching of isoforms from juvenile to adult.

(D) RIP-qPCR was performed in Neuro2a cells after UV-cross-linking followed by immunoprecipitation with the Srsf7

antibody. qPCR was performed for Eif4a2, Rbm7, and the control, Rps13. Fold enrichment was calculated by normalizing

to IgG.

(E) Schematic describing the role of Srsf7 in ADAS, thus establishing the juvenile transcriptome underlying the anabolic

state in juveniles.

* p < 0.05, Student’s t test. Data are represented as the means G standard deviations.
AS. Our work implied a possibility that a particular SF may account for the splicing of a portion of a gene

transcript and plural SFs contribute to the completion of the splicing of the particular gene. Future works

that analyze the contributions of multiple SFs to the particular splicing pattern will clarify how SFs coop-

erate in the regulation of splicing. Also, in this study, we investigated the AS at the RNA level and not at

the proteomic level. Further analysis at the proteomic level will reveal a functional consequence of the

RNA splicing on the protein functions. Because AS has numerous implications in pathogenesis, further

elucidation of the AS program and the roles of Srsf7 should lead to new therapeutics for intractable dis-

eases, especially of children, in contexts where the juvenile properties and juvenile transcriptome are

considered to be compromised. Through the AS, Srsf7 mediates the anabolic functions of the cells. By

utilizing the function of Srsf7 to promote anabolism, it might be possible to enhance the growth or regen-

erative capacity of the organs, for the purpose of treating the intractable diseases without effective treat-

ments or treatment via organ transplantation.

Here, we reported a comprehensive list of ADAS events in the postnatal organs and showed that the

splicing of the significant number of ADAS-target genes is mediated by Srsf7. Srsf7 mediates juvenile pat-

terns of AS, thus giving rise to the juvenile transcriptome. Mutation of Srsf7 causes a premature switch from

the juvenile to adult isoforms of at least Eif4a2 and Rbm7 both in vitro and in vivo, resulting in suppressed

anabolism and impaired growth. Thus, the Srsf7-mediated ADAS establishes the juvenile transcriptome

that underlies juvenile properties.
iScience 23, 100929, March 27, 2020 13



Limitations of the Study

� Our AS analysis was performed with a bulk of cells, not single cells. Our analysis implied that different

types of AS might occur in a single cell. Future work at the single-cell resolution will reveal how

different types of AS occur in transcripts from the same gene.

� Our analysis has not determined the comparable contribution of Srsf7 to AS among different SFs.

Plural SFs may target to the same gene locus. Future work may make it possible to quantitatively

compare the contributions of different SFs.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The accession numbers for the high throughput sequencing data reported in this paper are DNAData Bank

of Japan (DDBJ): DRA009510, DRA009537 and DRA009538.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100929.
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M., Kim, T.H., Calarco, J.A., Wang, X., Pan, Q.,
O’Hanlon, D., Kim, P.M., et al. (2012). Tissue-
specific alternative splicing remodels protein-
protein interaction networks. Mol. Cell 46,
884–892.

Erkelenz, S., Mueller, W.F., Evans, M.S., Busch, A.,
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TRANSPARENT METHODS 

 

Animal experiments 

All animal experiments were approved by the institutional animal care and use committee of 

Shiga University of Medical Science. All experiments were performed in accordance with the 

relevant guidelines and regulations. 

 

Establishment of Srsf7 mutant mice 

Reagents for genome editing 

The Srsf7 mutant mouse strains were generated using CRISPR-Cas9 technology as 

described previously (Inui et al., 2015). The C57BL/6N strain was used as the background 

strain. The guide RNA (gRNA) was designed using CRISPRdirect (https://crispr.dbcls.jp/). 

The target sequence of the gRNA is shown in Table S1. The gRNA sequence was cloned 

into the gRNA cloning vector (Addgene Plasmid ID #41824). 

To assess gRNA quality, a T7 endonuclease assay was performed. The gRNA plasmid and 

hCas9 plasmid (Addgene plasmid ID #41815) were transfected into NIH3T3 cells using 

Lipofectamine 2000 transfection reagent (Thermo Fisher Scientific). Genome DNA was 

extracted using a Puregene DNA Extraction Kit (Qiagen). The genome sequence containing 

the target site was PCR-amplified with PrimeSTAR Max DNA polymerase (Takara Bio) with 

the primers shown in Table S1. After heat denaturation followed by reannealing, cleavage 

efficiency by T7 endonuclease I was assessed by agarose gel electrophoresis. 

For gRNA synthesis, the T7 RNA polymerase recognition site was attached to the gRNA 

sequence via PCR. The PCR products were purified and used as the template for in vitro 

RNA synthesis using the mMESSAGE mMACHINE T7 Transcription Kit (Life Technologies). 

The synthesized gRNA was purified using MEGAclear (Ambion). Recombinant Cas9 protein 

was purchased (GeneArt Platinum Cas9 Nuclease, Thermo Fisher Scientific, B25642). 

 



Microinjection 

Mouse zygotes were obtained via in vitro fertilization (IVF) of WT C57BL/6N gametes. gRNA 

(100 ng/ml) and Cas9 protein (30 ng/ml, TrueCut Cas9 Protein v2, Invitrogen) were mixed 

and microinjected into the pro-nuclei and cytoplasm of zygotes, and the injected embryos 

were incubated at 37°C until they were transferred into pseudo-pregnant females at the two-

cell stage. 

 

Genotyping 

Genomic DNA was extracted from the tail tips of pups, and the genomic sequence around 

the gRNA target site was PCR-amplified using the primers shown in Table S1. The obtained 

PCR products were treated with ExoSAP-IT (Thermo Fisher Scientific) and sequenced. 

Genotype was also determined by restriction enzyme cleavage at the Afl-II site, which was 

altered by the mutations described in this study. For the analyses of Srsf7 mutant mice, both 

sexes of at least 4 different strains were analyzed. For the body weight analysis, body weight 

was measured with both sexes of mice on postnatal day 4 (P4), P7, P14 and once a week 

after 4 weeks old. 

 

In vitro fertilization, generation and culture of preimplantation embryos 

Sperm or ova were taken from sexually mature Srsf7 heterozygous mutant male or female 

mice, respectively. Female mice were superovulated by intraperitoneal administration of 0.15 

ml (7.5 IU) / animal serum gonadotropin (Serotropin, ASKA Animal Health Co., Ltd) and 0.15 

ml (7.5 IU) / animal placental gonadotropin (Gonatropin, ASKA Animal Health Co., Ltd) at the 

interval of 48 hours. HTF medium (ARK Resource) was used for IVF, and KSOM medium 

(ARK Resource) was used for embryo culture. Sperm were taken from the epididymis tail and 

resuspended in 100 μl of an HTF droplet in mineral oil (M5310, Sigma) on a 35 mm petri dish 

for 60 minutes at 37°C and 5% CO2. The ova were taken from the ampulla of the uterine tube 

16 hours after hormone administration and cultured in 200 µl of an HTP droplet in mineral oil 



on a 35 mm petri dish at 37°C and 5% CO2. Insemination was conducted by adding 4.5 μL 

precultured sperm resuspension into the ova-containing HTF droplet. Six hours after 

insemination, zygotes at the pronuclear stage were selected and transferred into 50 μl KSOM 

droplets within mineral oil and further cultured at 37°C and 5% CO2. On the next day, zygotes 

that had proceeded to the 2-cell stage were selected and further cultured until Dpc5.5. 

 

Genotyping of blastocysts with nested PCR 

To genotype the blastocysts, nested PCR was performed. Blastocysts in 2 μl of buffer were 

lysed in PCR tubes by 3 cycles of heating at 98°C and freezing at -30°C. With 1 µl of the 

lysates as a template, the 1st round of PCR was performed using PrimeSTAR Max DNA 

Polymerase (Takara Bio) (30 cycles of 10 sec at 98°C, 5 sec at 55°C and 30 sec at 72°C). 

Nested PCR was performed using 0.2% of the 1st round PCR product as a template (20 cycles 

of 10 sec at 98°C, 5 sec at 55°C and 30 sec at 72°C). The primer sequences are shown in 

Table S1. Digestion with the Afl-II restriction enzyme was used to analyse the genotypes. 

 

Cell culture 

Neuro2a (male) or NIH3T3 (male) cell lines were cultured in Eagle's Minimum Essential 

Medium (EMEM) or Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal 

bovine serum (FBS) and penicillin/streptomycin, respectively. To induce neural differentiation, 

retinoic acid was added to the culture medium at 20μM and incubated for 48 hours. For 

zeocin-induced cellular senescence model, cells were treated with zeocin at 80μg/ml for 96 

hours. In the knockdown experiments, Lipofectamine RNAiMAX (Invitrogen) was used to 

transfect the siRNA duplexes at 10 nM: Mouse Srsf7 siRNA1 (Bioneer, AccuTarget siRNA 

ID1424257), siRNA2 (ID1424259), and siRNA negative control (Applied Biosystems, 

AM4611). The knockdown efficiency was assessed 48 hours after transfection by qPCR or 

western blot analysis. The cell images were obtained using EVOS FL (Thermo Fisher 

Scientific). The number of cells per field was counted manually.  



Inducible expression of RasV12 in Neuro2a cells 

Neuro2a cell strains that express RasV12-EGFP in the doxycycline-inducible manner were 

established by serial transfections of pcDNA6/TR and pcDNA4/TO-RasV12-EGFP. The 

plasmids were gifted by Shunsuke Kon and Yasuyuki Fujita (Hokkaido University, Japan). To 

induce RasV12-EGFP, the cell strains were treated with doxycycline at 2 μg/ml concentration 

for 96 hrs. For immunocytochemistry, cells were fixed with 4% PFA for 10 min at RT, followed 

by the membrane permeabilization with 0.1% Triton X-100 for 2 min at RT. The cells were 

then incubated with 2% FBS for blocking for 1 hr at RT. Then cells were incubated with the 

primary antibody against Srsf7 (1:200, Thermo Fisher Scientific, PA5-39482) and Vimentin 

(for the control condition, 1:80, Santa Cruz, sc-6260) for overnight at 4°C. After washing with 

PBS for 10 min 3 times, the cells were incubated with the secondary antibodies anti-rabbit-

Alexa Fluor 546 and anti-mouse-Alexa Fluor 488 (1:1,000, Invitrogen) for 1 hr at RT. The cells 

were washed and mounted with Prolong Gold with DAPI (Thermo Fisher Scientific). Images 

were taken using a confocal microscope (Leica, TCS SP8). 

To analyze the effect of Srsf7 forced expression on RasV12-induced cellular senescence, 

pcDNA4-Srsf7 or control pcDNA4 empty plasmid was transfected to the Neuro2a-RasV12 

cells, followed by the doxycycline treatment. To assess the cell shape enlargement, cells area 

were measured using Fiji (Schindelin et al., 2012). Those cells with area values >+2SD from 

the mean of the untreated control Neuro2a cells were counted as enlarged cells. 

 

CRISPR-KO of Srsf7 in Neuro2a cells 

The gRNA plasmid used for the generation of Srsf7-KO mice and hCas9 plasmid were 

transfected into Neuro2a cells using Lipofectamine 2000 transfection reagent (Thermo Fisher 

Scientific). A limiting dilution method was used to clone the cell lines. A Srsf7 genotype was 

determined by sequencing analysis. The clones that did not show any wild type sequence 

were selected and used for the analysis. The clones that did not show any mutation were 

used as WT control cell lines. 



Gene expression analysis with qPCR 

The total RNA was extracted using TRIzol reagent (Thermo Fisher Scientific). The extracted 

RNA was quantified using a NanoDrop Lite Spectrophotometer (Thermo Fisher Scientific) 

and reverse transcribed using a High-Capacity RNA-to-cDNA Kit (Applied Biosystems) and 

a PCR Thermal Cycler Dice (Takara) according to the manufacturer’s instructions. qPCR was 

performed using a LightCycler 480 SYBR Green I Master Kit on a LightCycler 480 instrument 

(Roche) using the reverse transcribed cDNA as a template. The specificity and quality of the 

qPCR amplification was assessed by confirming a single band after agarose gel 

electrophoresis and a melting curve analysis. The data were normalized to control genes as 

indicated in the Figure legends. The primers used for the qPCR were listed in Table S1.  

 

SDS-PAGE and western blot analysis 

The cells were harvested in RIPA lysis buffer containing 25 mM Tris-HCl (pH 7.6), 150 mM 

NaCl, 1% NP-40, 1% sodium deoxycholate and 0.1% SDS. Mouse tissues were crushed 

using a homogenizer (μT-12, Taitec) in RIPA buffer, and the lysates were centrifuged at 

20,400 ×g for at least 5 minutes to remove debris. Then, 5x Laemmli sample buffer was added 

to the lysates, followed by boiling at 95°C for 2 minutes (min). The protein samples (10 μg 

per lane) were separated by SDS-PAGE and transferred to a Hybond-P PVDF membrane 

(GE Healthcare). Western blotting was performed using the following antibodies: Srsf7 

(1:1000, Thermo Fisher Scientific, PA5-39482), pS6 (1:1000, Cell Signaling Technology, 

#5364), S6 (1:1000, Cell Signaling Technology, #2217), p4E-BP1 (1:1000, Cell Signaling 

Technology, #2855), Pdk1 (1:1000, Cell Signaling Technology, #3820), Cox1 (mt-Co1, 1:1000, 

Abcam, ab14705), cMyc (1:1000, Cell Signaling Technology, #5605), YAP-S127P (1:1000, 

Cell Signaling Technology, #13008), LC3B (1:1000, Cell Signaling Technology, #2775S), p16 

ARC (1:1000, Abcam, ab51243), p27 Kip1 (1:1000, Cell Signaling Technology, #3698), γH2ax 

(1:1000, Cell Signaling Technology, #9718), Igf2 (1:500, R&D Systems, MAB792-SP), 

Alpha/beta tubulin (1:1000, Cell Signaling Technology, #2148S), Gapdh (1:4000, Cell 



Signaling Technology, #5174) and beta-actin (Actb) 13E5 HRP-conjugated (1:4000, Cell 

Signaling Technology, #5125). Secondary antibodies conjugated with horseradish peroxidase 

(Thermo Fisher Scientific, anti-mouse 32430 and anti-rabbit 32460) were used at 1:1000 

dilution. The immunoreactive bands were detected using Chemi-Lumi One L or Chemi-Lumi 

One Ultra (Nacalai Tesque). 

 

Immunocytochemistry 

Neuro2a cells treated with zeocin or transfected with siRNA were fixed with 4% 

paraformaldehyde for 10 min at RT, permeabilized with 0.1% Triton X-100 for 2 min at RT, 

blocked with 2% FBS, and incubated with antibody against Srsf7 (1:200, Thermo Fisher 

Scientific, PA5-39482) and Vimentin (1:80, Santa Cruz, sc-6260) at 4°C overnight. After 

washing with PBS for 10 min 3 times, cells were incubated with anti-rabbit-Alexa Fluor 488 

and anti-mouse-Alexa Fluor 546 (1:1,000, Invitrogen) for 1 hr at RT. After washing with PBS 

for 10 min 3 times, cells were mounted with Prolong Gold with DAPI (Invitrogen). Images 

were taken using a confocal microscope (Leica, TCS SP8). 

 

Immunohistochemistry (IHC) 

Brains were dissected from WT and Srsf7 mutant mice at P7 and were fixed with 4% PFA for 

3 hrs. The tissues were embedded in OCT compound and sectioned with a cryostat at 25 μm 

thickness. The floating sections were washed with PBS and blocked in PBS containing 2% 

FBS and 0.1% Triton X-100 for 1 hr at RT. The sections were incubated in primary antibody 

against MBP (1:400, Cell Signaling Technology, 78896) or Neurofilament L (1:1000, Cell 

Signaling Technology, #2837) overnight at 4°C. After washing with PBS for 15 min 3 times, 

sections were incubated in the secondary antibody anti-rabbit-Alexa Fluor 488 (1:1,000, 

Thermo Fisher Scientific) overnight at 4°C. After washing with PBS for 15 min 3 times, 

sections were mounted on glass slides with Prolong Gold with DAPI (Invitrogen). Images 



were taken using a confocal microscope (Leica, TCS SP8). The pixel intensities were 

measured with FIJI (Schindelin et al., 2012). 

 

Flux analysis 

The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were 

measured using an Agilent Seahorse XF Extracellular Flux Analyzer XFp (Seahorse 

Biosciences, MA). All tests were performed in accordance with the manufacturer’s 

instructions and as described previously (Solis et al., 2016). Neuro2a cells transfected with 

control siRNA or Srsf7 siRNA were seeded onto Seahorse XFp Cell Culture Miniplates 

(Seahorse Biosciences) at 12,000 cells per well and cultured for 48 hours. Before the 

metabolic analysis, cells were equilibrated in a non-CO2 incubator with Seahorse calibration 

buffer for 60 minutes. Using the Seahorse XFp Cell Energy Phenotype Test Kit (Seahorse 

Biosciences), OCR and ECAR under baseline and stressed conditions were measured and 

normalized to the number of cells at the measurement. 

 

Mitochondrial quantification 

Relative mitochondrial quantity was estimated by measuring the amount of mitochondrial 

genome DNA relative to nuclear genome DNA. The genome DNA was extracted from 

Neuro2a cells 72 hrs after transfection of control siRNA or Srsf7 siRNA (n=4) using DNeasy 

Blood and Tissue Kit (Qiagen). The quantitative real-time PCR was performed with primers 

against 16S and mt-Co1 for the mitochondrial and 18S for the nuclear genome DNA. The 

ratio of mitochondrial/nuclear genome DNA were calculated. The ratios were further 

normalized to the control siRNA condition. 

 

RNA immunoprecipitation (RIP)-qPCR 

Crosslinking was performed by exposing the Neuro2a cells in culture dishes to UV (UV 

Crosslinker, FS-800, Funakoshi) (at 254 nm and at 4000 x 100 μjoules/cm2 energy). The 



culture medium was replaced with PBS before UV-crosslinking. The cells were lysed with 

lysis buffer containing 20 mM Tris-Cl, pH 8.0, 1 mM EDTA, 100 mM NaCl, and 0.5% (v/v) 

Nonidet P-40, 0.5% sodium deoxycholate, 0.05% SDS). The cell lysates were collected by 

scraping and treated with 10 units of Turbo DNase at 37°C for 10 minutes. After centrifugation 

at 20,000 ×g for 5 minutes at 4°C, a portion (10%) of the supernatant was collected as the 

input sample. Ten micrograms of Srsf7 antibody (Thermo Fisher Scientific, #PA5-39482) and 

isotype control IgG (ab171870, Abcam) were conjugated to Dynabeads Protein A (10002D, 

Life Technologies) and incubated with the supernatants overnight at 4°C. The Dynabeads 

complexes were collected using a magnet stand (Dynal, Thermo Fisher Scientific) and 

washed with 170 µl CLIP wash buffer (1x PBS, 0.1% SDS, and 0.5% NP-40) twice for 10 

minutes and then with 170 µl high salt wash buffer (5x PBS, 0.1% SDS, and 0.5% NP-40) 

twice for 10 minutes. The beads were then resuspended in RIPA buffer (25 mM Tris-Cl, pH 

7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% SDS) and transferred to 

new tubes to remove nucleic acids attached to the tube walls. The crosslinks were reversed 

by incubating the beads with proteinase K at 37°C for 3 hours. The supernatant was collected 

as the RIP sample, and the RNA was extracted using TRIzol as described in the “Gene 

expression analysis” section. qPCR quantification was performed based on standard curves. 

The relative enrichment of the Srsf7 antibody was calculated by normalizing to the amount of 

RNA pulled down by the IgG control. 

 

mRNA-seq  

Cerebral cortex (CC) tissues were dissected from male mice at P1, P14 and P56 in triplicate. 

After homogenizing the tissues, total RNA was extracted with TRIzol (Invitrogen). To check 

the quality of the extracted RNA, the RNA integrity number (RIN) was determined using a 

Bioanalyzer (Agilent). The cDNA library was prepared using the TruSeq stranded mRNA 

library prep kit (Illumina). The quality of the cDNA library was checked with a Bioanalyzer and 

qPCR. The strand-specific sequencing was performed with HiSeq 2500 (read length: 50 base 



pairs, single-end; Illumina) to generate Fastq files. The RNA-seq data were processed and 

analyzed using Bio-Linux 8 (Field et al., 2006). The triplicate data of cardiomyocytes and 

hepatocytes at P1, P7 and P56 were derived from our previously deposited dataset and are 

available at accession number DRA007101 in the DDBJ Sequence Read Archive (DRA). 

To determine the juvenility-associated genes (JAGs) in the CC, the complete transcript set 

was filtered according to the following criteria: expression level higher than 0.5 fragments per 

kilobase of transcript per million fragments sequenced (FPKM) and fold change higher than 

2 at both P1 and P14 compared to P56. Gene expression was visualized using Integrative 

Genomics Viewer (http://software.broadinstitute.org/software/igv/). Gene Ontology (GO) 

analysis was performed using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) v6.8 (https://david-d.ncifcrf.gov/). 

 

Analysis of Srsf7 heterozygous mutant tissues 

Two Srsf7 mutant mice and one WT littermate control were used. CC tissues were dissected 

from Srsf7 mutant mice and a WT control littermate at P14. Cardiomyocytes and hepatocytes 

were isolated from Srsf7 mutant mice and a WT control littermate as described previously 

(Jam et al., 2018). The total RNA extracted from the cells was processed as described above 

in mRNA-seq. The strand-specific sequencing was performed with a NovaSeq 6000 (read 

length: 100 base pairs, paired-end; Illumina) to generate Fastq files. The heatmaps were 

generated using MeV (http://mev.tm4.org). 

 

Alternative splicing (AS) analysis 

The AS patterns were comprehensively analyzed using MISO (Katz et al., 2010). Reads 

obtained from the high-throughput sequencing analyses were mapped to the reference 

genome (version mm10) using HISAT (Kim et al., 2015) to generate bam files. To determine 

the age-dependent alternative splicing (ADAS) events, MISO analysis was performed with 

the bam files of the CC, CMs and Heps at P1, P7 (for CMs and Heps) / P14 (for CC) and P56, 



using “miso_annotations_mm10_v2” as the annotation. To determine the Srsf7-dependent 

AS events, MISO was used with the bam files of WT and Srsf7 mutants as the input and 

“miso_annotations_mm10_v2” as the annotation. This procedure generated results for each 

AS type: “Exon skipping (ES)”, “Intron retention (IR)”, “Mutually exclusive exons (MXE)”, 

“Alternative 5’ splice sites (A5SS)” and “Alternative 3’ splice sites (A3SS)”. To count the AS 

events, splicing events with Bayes factors higher than 101/2 were selected. For qPCR analysis, 

primers were designed to distinguish the juvenile and adult isoforms (sequences are shown 

in Table S1). 

Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index, Kelley et al., 2015) 

was utilized to predict the secondary and tertiary structures of Eif4a2 variants. 

 

Minigene assay 

For the minigene assays, mouse genomic sequences of Eif4a2 (containing exon 10 to 12) 

and Rbm7 (containing exon 1 to 3) were cloned into pcDNA3.1 vector. The WT control or the 

Srsf7-KO Neuro2a cells were transfected with each of the minigene plasmid and cultured for 

72 hours. Total RNA was extracted and processed for the purpose of RT-PCR analysis. The 

primer pairs used for this experiment were shown in Table S1.  

 

Statistical analysis 

For all quantified data, mean ± standard deviation (SD) is presented. Statistical significance 

between two experimental groups is indicated by an asterisk and comparisons were made 

using the Student’s t-test. P-values less than 0.05 were considered significant.   

 

Data and Code Availability 

The accession numbers for the high throughput sequencing data reported in this paper are 

DNA Data Bank of Japan (DDBJ): DRA007101, DRA009510, DRA009537 and DRA009538.  



Table S1. Sequence information. Related to Figures 2, 4, 6, 7, S3, S4 and S5.   

  

The guide RNA-target sequence Species: Mouse

Srsf7

Primers used for Srsf7 genotyping

Forward Reverse

Srsf7  genotyping PCR and

1st round of nested PCR
5'-TGAGAGTCGTTTGAGCGATG-3' 5'-ACCACCGGAGCTATATGGTG-3'

2nd round of nested PCR 5'-ACGTGTACGTTGCACAGCTC-3' 5'-CCCACTTACTTCCCATCCAA-3'

Primers used for SYBR qPCR

Gene Forward Reverse

Srsf7 5'-ATTCGCCTTTGTGGAATTTG-3' 5'-GGTGGCCTATCAAAACGAGA-3'

Igf2 5'-GCCCTCCTGGAGACATACTG-3'  5'-ACGGGGTATCTGGGGAAGT-3'

Pdk1 5'-AAATGCGAAATCACCAGGAC-3' 5'-ACCTGAATCGGGGGATAAAC-3'

Pdk2 5'-AGCTGGTGCAGAGCTGGTAT-3' 5'-GACCAGGGCATCTGTGAACT-3'

Polr2a 5'-GAGTCCAGAACGAGTGCATGA-3' 5'-ACAGGCAACACTGTGACAATC-3'

Actb 5'-CTTTGCAGCTCCTTCGTTG-3' 5'-ACGATGGAGGGGAATACAGC-3'

Tubb5 5'-GATCGGTGCTAAGTTCTGGGA-3' 5'-AGGGACATACTTGCCACCTGT-3'

Eif4a2-juvenile form 5'-GGATTGACGTGCAACAAGTG-3' 5'-AATTACGTCAACGCCGTTTC-3'

Eif4a2-adult form 5'-GGATTGACGTGCAACAAGTG-3' 5'-CCCTCTGCCAATTCTGTGAA-3'

Rbm7 -juvenile form 5'-TCCTCTTCGAGCTGTTCCAC-3' 5'-CCCAGCCTGTATGGTCAGAT-3'

Rbm7-adult form 5'-CTAGGCCTGGGACTGGAAC-3' 5'-TTACCGGCCCAGCCTGGTGG-3'

Primers used for cloning mouse Eif4a2 and Rbm7 for minigene constructs

Forward Reverse

Eif4a2_minigene_1,548bp CGGGGATGTCTAGCTTTTTG TAGGTCAGCCACATTCATGG

Rbm7_minigene_1,386bp CCTTTACGTCGTGACGTCTG AGCCAAAAACCCTCTCCCTA

Primers used for minigene assays

Gene Forward Reverse

Rbm7  minigene assay 5'-TTCTGAGGGTGCGCAGTAG-3' 5'-AGCAGATTCATGGCATAGGG-3'

Eif4a2  minigene assay 5'-TGCAACAAGTGTCCTTGGTTA-3' 5'-CCAATGCCTTTCCTCACAAG-3'

Primers used for RIP-qPCR

Gene Forward Reverse

Eif4a2 5'-TGACGAGATGGCACTCAGAA-3' 5'-CGACTCGCTCTTTATTCAAACA-3'

Rbm7 5'-TTGAGGCAGAGAGCCATATAGT-3' 5'-GAGATGCAGGCAGGAGGAC-3'

Rps13 5'-GTCCGAAAGCACCTTGAGAG-3' 5'-TTCCAATTAGGTGGGAGCAC-3'

Primers used for genome DNA quantification

Locus Forward Reverse

16S mitochondrial genome locus 5'-CCGCAAGGGAAAGATGAAAGAC-3' 5'-TCGTTTGGTTTCGGGGTTTC-3'

mt-Co1  mitochondrial genome locus 5'-GCCCCAGATATAGCATTCCC-3' 5'-GTTCATCCTGTTCCTGCTCC-3'

18S nuclear genome locus 5'-TAGAGGGACAAGTGGCGTTC-3' 5'-CGCTGAGCCAGTCAGTGT-3'

5'-GGCAATCCACACAGTTCTTAAGG-3'
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