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Abstract

Biometric ratios of the relative length of the rays in the hand have been analyzed between

primate species in the light of their hand function or phylogeny. However, how relative

lengths among phalanges are mechanically linked to the grasping function of primates with

different locomotor behaviors remains unclear. To clarify this, we calculated cross and tri-

ple-ratios, which are related to the torque distribution, and the torque generation mode at

different joint angles using the lengths of the phalanges and metacarpal bones in 52 pri-

mates belonging to 25 species. The torque exerted on the finger joint and traction force of

the flexor tendons necessary for a cylindrical grip and a suspensory hand posture were cal-

culated using the moment arm of flexor tendons measured on magnetic resonance images,

and were compared among Hylobates spp., Ateles sp., and Papio hamadryas. Finally, the

torques calculated from the model were validated by a mechanical study detecting the force

exerted on the phalanx by pulling the digital flexor muscles during suspension in these three

species. Canonical discriminant analysis of cross and triple-ratios classified primates almost

in accordance with their current classification based on locomotor behavior. The traction

force was markedly reduced with flexion of the MCP joint parallel to the torque in brachiating

primates; this was notably lower in the terrestrial quadrupedal primates than in the arboreal
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primates at mild flexion. Our mechanical study supported these features in the torque and

traction force generation efficiencies. Our results suggest that suspensory or terrestrial qua-

drupedal primates have hand structures that can exert more torque at a suspensory posture,

or palmigrade and digitigrade locomotion, respectively. Furthermore, our study suggests

availability of the cross and triple-ratios as one of the indicators to estimate the hand function

from the skeletal structure.

Introduction

Various types of biometric data have been used to analyze the relationship between hand skel-

etal morphology and grasping function. For instance, phalangeal curvature, which is pro-

nounced in orangutans, gibbons, and chimpanzees, is an adaptive response to the habitual

stresses associated with suspensory or climbing behavior in more arboreal primates [1, 2].

Regarding biometric ratios of relative lengths of different rays, the opposability index, namely,

total length of the thumb × 100/total length of the index finger, is one of the indicators associ-

ated with manipulative skills. The opposability index is the highest inH. sapiens (mean, 60),

followed by baboons (Papio spp.) and the mandrill (Mandrillus sphynx) (mean, 57–58). In

contrast, the index is the lowest in orangutans (Pongo spp.) (mean, 40) [3]. Similarly, length of

the thumb (total length of the metacarpal bone and proximal phalanx) relative to that of the

third ray (total length of the metacarpal bone and proximal and middle phalanges) was larger

in modern humans and archaic humans than in apes; therefore, these features appear to facili-

tate forceful precision grip and pinch grips [2]. On the other hand, the phalangeal index,

namely, length of three phalanges in digit III × 100/total hand length, was found to be 42%–

44% in Papio spp. and T. gelada and 52%–58% in primates from an arboreal milieu, suggesting

that it may reflect the degree of hand adaptation for grasping and climbing in an arboreal

milieu or walking and running in terrestrial ones [3]. Recently, Almécija et al. (2015) reported

that the thumb-to-fourth-ray ratio inH. sapiens, excluding the distal phalanx in the fourth ray,

has changed little since the evolution of the last common ancestor ofH. sapiens and chimpan-

zees (Pan troglodytes) [4]. They further stated that this ratio inH. sapiens is similar to that of

highly dexterous anthropoids, such as capuchins (Sapajus apella and Cebus albifrons), geladas

(Theropthecus gelada), and Papio spp., but not Pongo spp. and P. troglodytes, which are less

adept in the precision grip than Papio spp. [3–6]. Thus, the phalangeal curvature and thumb-

to-digit ratios reflect the mode of grasping function and locomotion. Meanwhile, the intrinsic

proportions of rays 2 to 5, namely, the metacarpal length relative to the total ray length and the

proximal, middle, or distal phalangeal length relative to the total length, may be largely

involved in the functioning of the primate hand. Actually, relatively short proximal and mid-

dle phalanges in terrestrial primates and African apes (Pan and Gorilla) imply an adaptation

that attenuates bending moments on the fingers during quadrupedal locomotion on the

ground [1]. Nevertheless, the following remains unclear 1) how the intrinsic proportions of

rays affects the prehensile mode in terms of the torque distribution, 2) how the torque is

altered by changes in the joint angle during prehension, and 3) how the torque generation

property on each finger joint contributes to the prehensile function, such as a cylindrical grip

or suspensory hand posture.

To address these questions, we introduced the cross- and triple-ratio [7], which is calculated

from the lengths of the metacarpal bone, and the proximal, middle, and distal phalanges, as

parameters associated with the intrinsic proportions of rays. For the first question, we
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examined whether or not the primate classification using these ratios was consistent with the

classification based on their behavior, i.e., arboreality, semi-arboreality, or terrestriality,

which is involved in prehensile function. We also derived the mathematical relationship

between the cross- and triple-ratios and the joint torque to examine any correlations between

the intrinsic proportions of rays and the torque distribution among the carpometacarpal

(CMC), the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints. Regard-

ing the second and third questions, the torques on the MCP, PIP, and distal interphalangeal

(DIP) joints were calculated from the moment arms of the digital flexor muscle tendons, the

distances between the centers of joints, and the joint angles obtained using magnetic reso-

nance imaging (MRI) during different prehensile modes, i.e., a cylindrical grip and a suspen-

sory hand posture. Using this model, we compared the profile of the torque generation

efficiency which varies by the change in the degree of the joint angle between suspensory and

terrestrial quadrupedal primates. This allowed us to clarify the mechanical features of primate

hands in terms of joint torque generation. To verify our hypothesis that the hand musculo-

skeletal structures, including the intrinsic proportion of rays, are optimized to the prehensile

function of the hand, we measured the force exerted on the finger and calculated the torque

generation profile during suspensory hand postures in the brachiating and terrestrial quadru-

pedal primates using their fixed forelimb samples. We demonstrated the mechanical advan-

tages of the arboreal and terrestrial hand during a suspensory hand posture, and quadrupedal

locomotion with respect to the torque generation profile using a model and a mechanical

experiment.

Materials and methods

Bone specimens and Computed Tomography (CT) images

We measured the bone lengths of primate specimens preserved at Gothenburg Museum of

Natural History; Natural History Museum of Denmark; National Museum of Nature and Sci-

ence, Tokyo; Primate Research Institute (PRI), Kyoto University; and Shimane University. We

also used a collection of CT images of primates from the Digital Morphology Museum pro-

vided by the PRI. We borrowed preserved samples of one pileated gibbon (Hylobates pileatus),
two gibbons (Hylobates spp.; unclassified), one spider monkey (Ateles sp.), and three hama-

dryas baboons (P. hamadryas) from the PRI collection. Hand samples of four crab-eating

macaques (Macaca fascicularis) were carefully transferred from other ophthalmic experiments,

which were approved by the Institutional Review Board of Shiga University of Medical Science

Animal Care and Use Committee (2012-5-5 and 2014-9-9) and conducted in this center, after

the completion of those ophthalmic experiments (See S1 Appendix). Hand CT images of these

primates were acquired using a CT scanner (Aquilion ONE CT scanner; Toshiba Medical Sys-

tems Corporation, Tokyo, Japan). The species examined in this study are listed in Table 1.

Locomotor behavior groups were classified according to previous reports [8–13]. Ateles sp.,

Pongo spp., andHylobates spp. are arboreal and exhibit suspensory behavior [8], therefore we

classified them as arboreal and suspensory species. Cebus capucinus, and Saimiri sciureus are

arboreal, however, they use quadrupedal locomotion when navigating trees [8], so we classified

them as arboreal primates that use quadrupedal locomotion. Papio spp. and Theropithecus gel-
ada forage and travel primarily on the ground [8, 11], so we classified them as terrestrial pri-

mates. Gorilla gorilla use both terrestrial and arboreal habitats to feed, rest, and build their

sleeping nests [8]. Pan troglodytes generally feed in trees for much of each day but travel on the

ground between feeding sites. Pan troglodytes exhibit both quadrupedal and suspensory loco-

motion in an arboreal setting, whereas they use quadrupedal knuckle-walking locomotion on

the ground [8]. However, both Gorilla and Pan sp. are considerably less suspensory than
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gibbons and orangutans [8, 12, 13], so we classified Gorilla gorilla and Pan troglodytes as semi-

arboreal primates, but not suspensory species. Cercopithecus neglectusmove primarily through

the understory and on the ground: therefore, we classified them as semi-arboreal primates.

Cercopithecus diana use primarily the canopy and understory layers [9], andMacaca fascicu-
laris is primarily arboreal [8, 11], therefore, we classified them as arboreal primates in this

study. OtherMacaca species examined use both arboreal and terrestrial habitats, so we classi-

fied them as semi-arboreal species.

Information about the samples is presented in Table 1 and S1 Table.

Bone measurements

The lengths of the metacarpal bones and the proximal, middle, and distal phalanges were mea-

sured using digital calipers (Fig 1A). The lengths of the metacarpal bone and proximal and

middle phalanges were measured between the head and base of the bones in a dorsal view,

whereas the length of the distal phalanx was measured between the same in a lateral view

because the most concave facet of the base in the lateral view of the distal phalanx was closely

Table 1. Primate species measured in this study.

Family SID Species n Ba Specimen

Hominidae 1 Homo sapiens 9 T(BP) bone

2 Gorilla gorilla 4 SA bone, CT

3 Pan troglodytes 7 SA bone, CT

4 Pongo abelii 1 A(SS) CT

5 Pongo pygmaeus 2 A(SS) bone, CT

Hylobatidae 6 Hylobates agillis 1 A(SS) CT

7 Hylobates lar 2 A(SS) CT

8 Hylobates pileatus 1 A(SS) CT

9 Symphalangus syndactylus 1 A(SS) CT

10 Hylobates sp. (unclassified) 2 A(SS) CT

Cercopithecidae 11 Cercopithecus diana 1 A(Q) bone

12 Cercopithecus neglectus 1 SA bone

13 Macaca cyclopis 1 SA bone

14 Macaca fascicularis 4 A(Q) CT

15 Macaca fuscata 4 SA bone, CT

Cercopithecidae 16 Macaca mulatta 2 SA bone

17 Macaca nemestrina 1 SA bone

18 Macaca radiata 1 SA bone

19 Papio anubis 1 T(Q) bone

20 Papio hamadryas 4 T(Q) bone, CT

21 Theropithecus gelada 1 T(Q) bone

Atelidae 22 Ateles paniscus 1 A(SS) bone

23 Ateles belzebuth 1 A(SS) bone

24 Ateles geoffroyi 1 A(SS) bone

25 Ateles sp. (unclassified) 1 A(SS) CT

Cebidae 26 Cebus capucinus 1 A(Q) bone

27 Saimiri sciureus 1 A(Q) bone

SID = species identification number,
aB = behavior, A = arboreal, BP = bipedal locomotion, Q = quadrupedal locomotion, SA = semi-arboreal, SS = suspensory species, T = terrestrial,

https://doi.org/10.1371/journal.pone.0232397.t001
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located to the distal end of the head of the middle phalanx. Similarly, for some species, CT

scan images were used to measure these lengths using the OsiriX Digital Imaging and Com-

munication in Medicine viewer (Pixemeo SARL, Bernex, Switzerland) (Fig 1A). We calculated

the cross and triple-ratios from bone lengths measured using calipers as well as reconstructed

images obtained by CT scanning. The resolution of the CT images ranged from 0.125 × 0.125

to 0.761 × 0.761. It should be noted that cross and triple-ratios are dimensionless quantities

that remain constant without size calibration between data acquired from the two methods

Fig 1. Landmarks on finger bones and calculation of joint torques in the hand. (A) CT image of the phalanges and metacarpal bone of Papio
hamadryas: the lengths of the metacarpal bone and the proximal and middle phalanges were measured between the head and base of the bones in a

dorsal view. The length of the distal phalanx was measured between them in a lateral view. (B) The holding torques of the carpometacarpal (CMC)

(τCMC), metacarpophalangeal (MCP) (τMCP), proximal interphalangeal (PIP) (τPIP), and distal interphalangeal (DIP) (τDIP) were calculated using the

lengths of the bones, joint angles, θ1, θ2, θ3, and θ4, and the reaction forces from the cylindrical object to the finger, fH1, fH2, fH3, and fH4. The white arrow

indicates the reaction force exerted on the palm or the thumb during power grasping. Ccyl: A central axis of a cylinder.

https://doi.org/10.1371/journal.pone.0232397.g001
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(see the next section “Cross and triple-ratios”). The length was not measured in digit III of Pan
troglodytes #5 and digit IV of Pan troglodytes #5 because of the bone fracture of the distal pha-

lanx and the metacarpal bone, respectively. The length of the distal phalanx of digit III was not

measured in Papio hamadryas #1 because that phalanx was missing.

Cross and triple-ratios. A digital ray consists of a metacarpal and three phalangeal bones.

A cross-ratio [14] can be used as an indicator to decompose proportions among the three vari-

ables, namely, the lengths of the three phalanges of digits II to V, into a single dimensionless

value. Hence, the cross-ratio can represent the positional relationship among the CMC, MCP,

PIP, and distal interphalangeal (DIP) upon finger flexion and extension. The cross-ratio of a

digit was calculated as follows [7, 15]:

ðlpp þ lipÞ � ðlip þ ldpÞ
lip � ðlpp þ lip þ ldpÞ

ð1Þ

where lpp, lip, and ldp are proximal phalangeal, middle phalangeal, and distal phalangeal

lengths, respectively (Fig 1A). See S2 Table for an overview of used symbols and abbreviations.

The correlation among the three phalanges during grasp can be analyzed using Eq (1); how-

ever, a power grasp using the palm should be analyzed with the metacarpal bone. Therefore,

the triple-ratio was calculated from metacarpal (lmc), proximal phalangeal (lpp), middle phalan-

geal (lip), and distal phalangeal (ldp) lengths from digits II to V (Fig 1A):

ðlmc þ lppÞ � ðlpp þ lipÞ � ðlip þ ldpÞ
lpp � lip � ðlmc þ lpp þ lip þ ldpÞ

The triple-ratio can be decomposed into two different cross-ratios, which is defined by the

following equation:

ðlmc þ lppÞ � ðlpp þ lipÞ � ðlip þ ldpÞ
lpp � lip � ðlmc þ lpp þ lip þ ldpÞ

¼
ðlpp þ lipÞ � ðlip þ ldpÞ
lip � ðlpp þ lip þ ldpÞ

�
ðlmc þ lppÞ � ðlpp þ ðlip þ ldpÞÞ
lpp � ðlmc þ lpp þ ðlip þ ldpÞÞ

¼ Ph cross ratio �MPh cross ratio
ð2Þ

where the Ph cross-ratio is calculated for the distal, middle, and proximal phalanges (Ph trip-

let) and the MPh cross-ratio is calculated for the metacarpal bone, the proximal phalanx, and

the total length of the middle and distal phalanges (MPh triplet). We compared the values of

these ratios among arboreal, semi-arboreal, and terrestrial primates and examined their corre-

lation with grasp function.

Torque on the joints during a power grasp

To calculate the turning force (or torque) of the phalanges and metacarpus, we first assumed

that the moment of inertia of the phalangeal metacarpal segment was small and that it could be

neglected when measuring the power grasp. We assumed a hand position where the joint

angle does not change while holding an object (e.g., when holding the branches of a tree; Fig

1B). However, holding torques in the finger joints (τ) are required under these conditions. To

examine the correlation between the intrinsic proportion of rays and the holding torque, we

postulated an ideal grip, wherein we disregarded the following forces: 1) friction between the

surface of the object and the skin of the hand and 2) shearing of the soft skin and underlying

subcutaneous tissue led by friction. Thus, we can assume that the reaction force from the

object grasped per unit area is constant on the finger surface. Under these assumptions, the
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resultant force (fHm) is normal to the cylinder surface, and it is exerted at the midpoint of the

bone (Fig 1B).

We calculated the holding torques of the carpometacarpal (CMC), metacarpophalangeal

(MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints, namely, τCMC,

τMCP, τPIP, and τDIP, respectively, as follows (S2 Appendix):

tCMC

tMCP

tPIP

tDIP

0

B
B
B
B
@

1

C
C
C
C
A
¼

1

2
aððl2mc þ l

2

pp þ l
2

ip þ l
2

dpÞ þ lmc lppC2 þ lpp lipC3 þ lmclip C23 þ lip ldpC4 þ lppldp C34 þ lmcldp C234Þ

1

2
aððl2pp þ l

2

ip þ l
2

dpÞ þ lpp lipC3 þ lip ldpC4 þ lppldpC34Þ

1

2
aððl2ip þ l

2

dpÞ þ lip ldpC4Þ

1

2
al2dp

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

ð3Þ

where α is a proportionality constant and lmc, lpp, lip, and ldp are the lengths of the metacarpal

bone and the proximal, middle, and distal phalanges, respectively. Here CMC, MCP, PIP, and

DIP joint angles are expressed as θ1, θ2, θ3, and θ4 (Fig 1B), and Cklmn and Sklmn represent cos

(θk + θl + θm + θn) and sin(θk + θl + θm + θn), respectively. The torque ratios of different joints

in digit III during a power grasp were calculated from Eq (3).

Pan troglodytes and Gorilla gorilla travel on the ground by knuckle-walking, during which

they support their forelimb on the dorsal surface of their fingers [8]. In this posture, the torque

on the PIP joint is generated through contraction of the extensor digitalis muscles in the oppo-

site direction that torque is generated during power grasping. Hence, joint torque was not con-

sidered during knuckle-walking in this study.

Dissection of primate upper limb muscle

Samples. We used the fixed adult samples of three Hylobates spp. [species identification

number (SID) 8 and 10], one Ateles sp. (SID 25), and three P. hamadryas (SID 20). Skin, sub-

cutaneous tissue, and extensor muscles of the right or left forearm were removed, and the

flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) were exposed

with their tendons without hand dissection (Fig 2A). The formalin-fixed forearm was

immersed in saline containing 0.05% sodium azide so that the fingers could be easily flexed,

which improved the contrast of MR images. The forearm was set in a cylinder equipped with

a wooden club that was grasped by the hand by pulling FDS and FDP muscles in the forearm.

The wooden club measured 2, 3, or 4 cm in diameter for Hylobates spp. and Ateles sp. and

1.5, 2, or 3 cm in diameter for P. hamadryas was used, depending on the size of the hand

(Fig 2A).

Magnetic resonance imaging

Sagittal images of the primate hands were acquired using the 4.7T MRI system (BioSpec 47/40

USR; Bruker, Billerica, Massachusetts) while grasping the wooden club by pulling FDS and

FDP muscles. The hand was scanned in the extended position and in the flexed position while

grasping wooden clubs measuring 2 and 3 cm in diameter. ForHylobates spp. and Ateles sp.,

the hand was also scanned in the flexed position while tightly or mildly grasping a wooden

club measuring 4 cm in diameter. We obtained scans of five different flex positions, with five

different DIP, PIP, and MCP angles, to improve the accuracy of the regression curve of the

torque and the moment arm. Similarly, the hand of P. hamadryas was scanned in the extended

position and the flexed position while grasping wooden clubs measuring 2 and 3 cm in
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Fig 2. Measurements of the distance between joint centers, joint angles, and moment arms during flexion of the

digits, and the force exerted on the phalanges during a suspensory hand posture. (A) The forearm was settled in the

cylinder equipped with a wooden club that was grasped with hand by pulling the flexor digitorum superficialis (FDS)

and flexor digitorum profundus (FDP) in the forearm. The wooden club was grasped with the primate hand, and

sagittal images of the primate hands were acquired using a 4.7T MRI system. (B) The centroid of the circle

superimposed on the concave proximal facet of the phalanx was defined as the joint center of rotation. The distance

between the rotation centers was defined as the lengths of the metacarpal bone (lmc), and the proximal (lpp) and middle

(lip) phalanges. The length of the distal phalanx (ldp) was defined as the distance from the center of the distal
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diameter, in addition to the flexed position while tightly or mildly grasping a wooden club

measuring 1.5 cm in diameter to accommodate the smaller hand size of P. hamadryas. Rapid

acquisition with a relaxation enhancement sequence was applied to all samples. Parameters of

MRI sequences are described in S3 Table. MRI images were obtained for five different flex pos-

tures of each hand. Three-dimensional images were reconstructed from 2D images, where the

bones and tendons of flexor digitorum muscles were colored using ImageJ software (imagej.

nih.gov/ij/) [16] (S1 Fig).

Calculation of torque generation efficiency

The ratios of the torque relative to the moment arm on each joint, or the traction forces by

flexor muscles needed to generate a holding torque, were compared amongHylobates spp.,

Ateles sp., and P. hamadryas to examine the difference in torque generation efficiency between

brachiating primates and terrestrial primates. We defined the centroid of the circle superim-

posed on the concave proximal facet of the phalanx as the rotation center of the joint (Fig 2B).

The distance between the centers of MCP and PIP joints or those of PIP and DIP joints was

defined as the length of the proximal phalanx (lpp) or the length of the middle phalanx (lip).

The length of the distal phalanx (ldp) was defined as the distance from the center of DIP joints

to the tip of the distal phalanx. To examine the efficiency of torque generation with the finger

size effect removed, normalized load torques on MCP, PIP, and DIP joints (τMCP_N, τPIP_N,

and τDIP_N, respectively) were calculated using the normalized lengths of the phalanges relative

to the total length (L = lpp + lip + ldp) of the phalanges, lpp/L, lip/L, ldp/L respectively, with Eq

(3).
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In the suspensory hand postures ofHylobates and Ateles sp., the PIP joint was positioned

on the top of the support [13]; therefore, the holding torques of MCP and PIP joints during

interphalangeal (DIP) joint to the tip of the distal phalanx. (C) At the proximal interphalangeal (PIP) joint, a moment

arm of the flexor digitorum muscle tendons (lm) was measured without discrimination of FDP and FDS tendons

because both tendons pass through the palmer side of the PIP joint at almost the same distance from the axis of this

joint and cannot be discriminated in MR images. The traction force of the tendon by muscle contraction is indicated

as Fm. (D) At the metacarpophalangeal (MCP) joint, moment arms of FDP and FDS tendons were separately

measured. However, (E) lumbricalis and interosseous muscles were not discriminated, therefore, a moment arm of a

bundle of intrinsic muscles, which includes the lumbricalis, was measured at the radial side of the MCP joint. Pressure

sensors were placed between the column and palmar surface of the proximal or middle phalanx (F). A plastic bottle

filled with water (1 kg weight) was strung from the distal phalanx of digit III together with the digit II, IV, and V to fix

the finger on the column wrapped with a rubber sheet (G). On the other side, another 1kg weight was strung from the

digital flexor muscles to pull their tendons (G). The torques of MCP, and PIP joints were calculated using the force

measured by the sensors, fH2, and fH3, the distance from the MCP or PIP joint to the center of the sensor, lb, and lc, the

length of the proximal phalanx, lpp, and PIP joint angle (H).

https://doi.org/10.1371/journal.pone.0232397.g002
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suspensory hand postures were calculated as follows (S3 Appendix):

tMCP

tPIP

 !

¼

1

2
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2ðsin 2bþ sin ð2gþ 2dÞÞ
2
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2
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@

1

C
C
A ð5Þ

In this posture, it is suggested that the force is mainly loaded to the proximal and middle

phalanges; hence, we calculated the alternative torque t #n , where the contribution of the distal

phalanx was eliminated.

t #MCP

t #PIP

 !

¼

1

2
fur

2ðsin 2bþ sin 2gÞ
2
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2
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2 sin2 2g
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@
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Here, fu is force per unit length, r is the diameter of the circle on which the rotation centers

of MCP, PIP, and DIP joints lie, and 2β and 2γ are central angles of the intercepted arcs, which

are formed between the rotation centers of MCP and PIP joints and between those of PIP and

DIP joints, respectively.

The moment arm of the FDP tendon was measured at the DIP joint, but at the PIP joint,

the moment arm of the flexor digitorum muscle tendons was measured without discrimina-

tion of FDP and FDS tendons. This is because both tendons pass through the palmar side of

the PIP joint at almost the same distance from the axis of this joint, and they cannot be dis-

criminated in MRI (Fig 2C). At the MCP joint, the moment arms of FDP and FDS tendons

were discriminated and measured at the midline of each finger (Fig 2D); however, the lumbri-

calis and interosseous muscles were not discriminated (Fig 2E). Hence, the moment arm of a

bundle of intrinsic muscles, which included the lumbricalis, was measured at the radial side of

the MCP joint (Fig 2E). Joint torque was generated by the traction of the tendon through the

pulling muscle. Normalized torque (τN), which is calculated using Eqs 4 or 6, is described by

the following equation:

tN ¼ Fm �
lm
jLj

ð7Þ

Here, Fm and lm are the traction forces of the tendon and moment arm, respectively (Fig 2).

Then, Fm was calculated as follows:

Fm ¼ tN �
jLj
jlmj

ð8Þ

Therefore, if the torque is constant and Fm is small, the efficiency of torque generation on

the joint is high. Correlations between the joint angle and Fm or lm were examined at DIP, PIP,

and MCP joints. The joint angle was measured, and τN and Fmwere calculated at five flex pos-

tures in each individual. This resulted in 15 data points for each joint, which were used for the

correlation analysis between the joint angle and τN or Fm by combining data from three indi-

viduals (P. hamadryas orHylobates).
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A mechanical study: Measurement of the force exerted on the phalanx

during suspensory hand posture

Force exerted on the proximal and middle phalanges was measured using resistor-type pres-

sure sensors measuring 5.08 mm in diameter (FSR1 400; Interlink Electronics, Camarillo,

CA) in the forelimb samples of P. hamadryas and Hylobates spp. Sensors were placed between

the palmar surface of the proximal and middle phalanges and the column, so that resistance

could be measured adequately (Fig 2F). The electrical resistance was measured with a digital

tester (TDX-200; Ohm Electric, Saitama, Japan) in a suspensory hand posture where a 1 kg

weight was strung from the distal phalanx of digit III together with digits II, IV, and V to fix

the fingers over the column wrapped with a rubber sheet, or to stop the fingers from slipping

down. On the opposite side, another 1 kg weight was strung from the digital flexor muscles to

pull their tendons downwards with a stable force (9.8 N) (Fig 2G). We used the columns mea-

suring 2, 3, 4, 5, or 8 cm in diameter forHylobates spp.; and 1.5, 2, 3, 4, or 5 cm in diameter for

P. hamadryas depending on the size of the hand. The calibration curve for resistance-force

conversion was acquired using weights over the range of 30g to 1,150g. The determinant coef-

ficient of the calibration curve was 0.99 using a power function as a fitting curve. Torques gen-

erated on the PIP and MCP were compared among different joint angles using the equations

in S2 Appendix because the force normal to the longitudinal axis of the phalanx was measured

by the pressure sensor (Fig 2H):

t #MCP

t #PIP

 !

¼
lbfH2 þ ðlppC3 þ lcÞfH3

lcfH3

 !

ð9Þ

where lpp is length of the proximal phalanx, lb is the distance between the MCP joint and the

center of the pressure sensor on the proximal phalanx, lc is the distance between the PIP joint

and the center of the pressure sensor on the middle phalanx, and FH2 or fH3 is a reaction force

exerted on the proximal or middle phalanx (Fig 2H).

Data were acquired from threeHylobates, and three P. hamadryas, whereas sufficient data

could not be acquired from one P. hamadryas when the columns measuring 5 cm was held

because of incompatibility between the finger and the columns or the sensors, due to their

thinner and shorter finger. Torque data were corrected using the total weight including the

weights (2 kg) and the forearm weight as the following:

Corrected torque ¼ measured torque�
weightsð2 kgÞ

weightsð2 kgÞ þ forearm weight

The torque-PIP joint angle curve profile represents the torque output properties with

respect to different degrees of finger flexion. The curve profile, but not the absolute value of

the torque, may be independent of individual body mass during a suspensory hand posture

because the magnitude of FH2 or fH3 in Eq 9 is proportional to the body mass. Hence, the tor-

que-PIP joint angle curve profiles ofHylobates and P. hamadryas were compared to examine

the difference in torque output properties on the MCP and PIP joints between a suspensory

species and a terrestrial quadrupedal primate.

Torque on the joints during quadrupedal locomotion on tree branches

The hand posture used by primates during quadrupedal locomotion on branches is palmi-

grady, in which the primary loading area is the palm [17, 18] Torque on the joints during the

adoption of a palmigrady posture on vertical substrates can be calculated using the equation
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for power grasp as described above; therefore, that on horizontal substrates was calculated (S5

Appendix and S8 Fig).Macaca fascicularis, Cercopithecus diana, Cebus capucinus, and Saimiri
sciureus were chosen as the quadrupedal primates in the arboreal group, and Papio anubis,
Papio hamadryas, and Theropithecus gelada were chosen as the terrestrial quadrupedal pri-

mates in our samples. Calculated torques on the MCP and PIP joints were compared between

the arboreal and terrestrial quadrupedal primates.

Statistics

We used R3.2.4 and SPSS Statistics version 22 to analyze the data. Primate species were classi-

fied based on hand cross or triple-ratios using canonical discriminant analysis (CDA) and

finite mixture analysis (FMA). Multivariate classification of primate species was also per-

formed by CDA with four variables of triple-ratios and eight variables of Ph and MPh cross-

ratios in digits II to V; the most important discriminant variable among these ratios was deter-

mined. FMA was also applied to the classification of primates in this study because it is highly

accurate when used on datasets with small sample sizes and missing data. FMA also accurately

assigns a status of “unknown” to taxa [19]; therefore, mclust, an R package for FMA was used

for classification in this study. After classifying primates into clusters using CDA and FMA,

two-way repeated measures analysis of variance was used to analyze the interaction between

the primate clusters and the cross or triple-ratio from digits II to V using SPSS. This allowed

us to examine any differences in the patterns of the cross and triple-ratios of these digits

between the clusters and between humans and terrestrial quadrupedal primates. Torque ratios

of the PIP, MCP, and CMC joints were compared among the clusters using two-way analysis

of variance and any interspecific differences were analyzed using Scheffe’s post hoc test [20] in

SPSS. Differences in τN and Fm were compared between P. hamadryas andHylobates by gener-

alized estimating equations (GEE) using geepack in R. Differences were considered significant

at P< 0.05.

Results

Primate classification based on hand cross and triple-ratios

The mean triple or cross-ratio in each species was used for CDA. According to CDA using the

triple and cross-ratios of the hands, the primates were almost adequately clustered into the

arboreal, semi-arboreal, and terrestrial groups (p< 0.001) (Fig 3A and 3B, and Table 2). The

gorilla (Gorilla gorilla) was clustered into the semi-arboreal group, and it is a relatively good

tree climber despite rarely using suspensory feeding postures [8, 21]; hence, this classification

may reflect the gorilla’s hand function. In the reclassification of primate species, 96% of the pri-

mates, with the exception ofM. fascicularis, were correctly classified by CDA using both triple

and cross-ratios (Fig 3A and 3B, and Table 3). However,M. fascicularis is primarily arboreal

but is also adept on terrestrial substrates; therefore, CDA using these ratios may classify the

primate based on its locomotor behavior.

In FMA, raw data of the triple-ratio in every sample were used; however, the results were

similar to those of CDA, although the white-headed capuchin (Cebus capucinus) and the

Diana monkey (Cercopithecus diana) were classified within the semi-arboreal cluster (Fig 3C).

On the other hand, Hominoidea species (Pongo spp.,Hylobates spp., P. troglodytes, G. gorilla,

andH. sapiens) were classified into three groups, arboreal, semi-arboreal, and terrestrial clus-

ters, in both CDA and FMA (Fig 3).H. sapiens was grouped with Old World monkeys in both

CDA and FMA (Papio spp. and T. gelada; Fig 3); however, C. capucinus, which is also a New
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Fig 3. Individual samples scores of the three examined groups obtained by canonical discriminant analysis on the two

canonical functions using triple- and cross-ratios, and a finite mixture analysis. A multivariate classification of primate species

was performed by canonical discriminant analysis with four variables of a triple-ratio (A) or eight variables of Ph and MPh cross-

ratios (B) in digits II to V. Additionally, a finite mixture analysis using four variables of a triple-ratio (C) was applied to primate

classification. Uncertainty classification boundaries were shown as darker greyscale region (C). Ss. Saimiri sciureus, Pp. Pongo
pygmaeus, Mfa.Macaca fascicularis, Cc. Cebus capucinus, Cd. Cercopithecus diana, Ag. Ateles geoffroyi, Poa. Pongo abelii, Ab. Ateles
belzebuth, Sys. Symphalangus syndactylus, Hp.Hylobates pileatus, Ha.Hylobates agillis, Hl.Hylobates lar, Ap. Ateles paniscus, Mm.

Macaca mulatta, Mc.Macaca cyclopis, Mn.Macaca nemestrina, Mr.Macaca radiate, Gg. Gorilla gorilla, Mfu.Macaca fuscata, Pt.

Pan troglodytes, Cn. Cercopithecus neglectus, Ph. Papio hamadryas, Tg. Theropithecus gelada, Paa. Papio anubis, and Hs.Homo
sapiens.

https://doi.org/10.1371/journal.pone.0232397.g003
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World monkey, was clustered with Old World monkeys in FMA (Macaque and Cercopitheci-

dae; Fig 3C). The results of CDA and FMA based on the cross or triple-ratio were found to be

consistent with locomotor behavior or hand function.

To clarify which digit is important for discriminating the primates, we examined the canon-

ical function in CDA. Most of the variation was explained by the first canonical function, since

the contributions of the first axis were 88.8% and 88.9% using triple and cross-ratios, respec-

tively (Table 2). Therefore, three groups were distinguished primarily by the variable in the

first function. In the first CDA function using the triple-ratio, digit III (0.714) was the most

important discriminant variable, followed by digits II (0.250), V (0.111), and IV (0.028)

(Table 4). Similarly, digit III (1.276) was the most important discriminant variable in the first

function, followed by MPh (0.666) and Ph (−0.504) of digit II in CDA using the cross-ratio

(Table 4).

Differences between cross and triple-ratios of digits II to V among the

clusters classified by CDA and a finite mixture model

The hand triple-ratio and Ph and MPh cross-ratios were compared among arboreal (cluster 1;

n = 10; SID 4–9, 22–24, and 27), semi-arboreal (cluster 2; n = 9: SID 2, 3, and 12–18), and ter-

restrial clusters (cluster 3; n = 4; SID 1 and 19–21) (Table 1), which consisted of the species

common to both classifications using CDA and a finite mixture model. They differed signifi-

cantly among clusters 1, 2, and 3, and the values were smallest in the arboreal cluster and larg-

est in the terrestrial cluster (Fig 4A, 4B and 4C). The hand triple-ratio and MPh cross-ratio

significantly differed betweenH. sapiens and terrestrial quadrupedal primates (Fig 4D and 4E),

but there was no significant difference in the Ph cross-ratio between them (Fig 4F).

Table 2. Eigen values and test of significance of the discriminant functions in CDA.

Triple-ratio Cross-ratio

Function 1 2 1 2

Eigen valued 4.884 0.617 7.902 0.990

Percent of variance 88.8 11.2 88.9 11.1

Canonical correlation 0.911 0.618 0.942 0.705

Triple-ratio Cross-ratio

Test of Functions 1 through 2 2 1 through 2 2

Wilks’ Lambda 0.105 0.618 0.056 0.502

Chi-square 46.186 9.855 53.180 12.734

df 8 3 16 7

p value < 0.001 0.020 < 0.001 0.079

https://doi.org/10.1371/journal.pone.0232397.t002

Table 3. Classification results by CDA using the triple- or cross-ratio.

Predicted Group Membership Correctly classified (%)

Arboreal Semi -arboreal Terrestreal Total

Arboreal 12 1 13 92.3

Semi-arboreal 8 8 100.0

Terrestrial 4 4 100.0

Total 25 96.0

https://doi.org/10.1371/journal.pone.0232397.t003
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Correlation between cross and triple-ratios and joint torque distribution

Cylindrical grip and suspensory hand posture. The Ph and MPh ratio and triple-ratios

can be described by the square root of the torque distribution in a cylindrical grip (S4 Appen-

dix). Additionally, the cross and triple-ratios of digit III were the most important variables in

CDA (Table 4); hence, the torque distributions of the finger joints were calculated in digit III

using Eq (4) in arboreal (n = 10; SID 4–9, 22–24, and 27), semi-arboreal (n = 9: SID 2, 3, and

12–18), and terrestrial primates (n = 4; SID 1 and 19–21) (Fig 5).
ffiffiffiffiffiffiffi
tPIP
tMCP

q
or

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

during a

cylindrical grip was significantly larger in terrestrial primates at extension and mild flexion

(r� 0.32) or at all positions examined in this study, respectively, than in arboreal primates

(Fig 5A and 5B). On the other hand, the
ffiffiffiffiffiffiffi
tMCP
tCMC

q
value was smallest in terrestrial quadrupedal

monkeys, although the
ffiffiffiffiffiffiffi
tPIP
tCMC

q
value did not differ between arboreal and terrestrial quadrupedal

primates when r ranged between 0.28 (at flexion) and 0.50 (at extension) (Fig 5C and 5D). A

larger
ffiffiffiffiffiffiffi
tPIP
tMCP

q
and smaller

ffiffiffiffiffiffiffi
tMCP
tCMC

q
at extension and mild flexion reflect a smaller torque load on

the MCP joint in terrestrial primates during quadrupedal locomotion.

Interestingly,
ffiffiffiffiffiffiffi
tPIP
tMCP

q
during suspensory hand posture was significantly larger upon strong

flexion of the finger (r = 0.28 and 0.30) but smaller upon mild flexion (r = 0.40 and 0.50) in the

brachiating primates (n = 9;Hylobates spp., Ateles spp., and Pongo spp.) than in terrestrial qua-

drupedal primates (n = 3) (Fig 5E).

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

was considerably smaller in brachiating primates

during suspensory hand posture as well as in arboreal primates during a cylindrical grip than

in terrestrial quadrupedal primates (Fig 5F). Smaller

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

and larger
ffiffiffiffiffiffiffi
tPIP
tMCP

q
values in

brachiating primates during strong flexion of the finger may indicate that a smaller torque dis-

tribution on the MCP joint may be advantageous in suspensory hand postures. Taken

together, our results suggest that load is less distributed on the MCP joint in brachiating

Table 4. Standardized coefficients in canonical discriminant functions.

Variable Function 1 Function 2

Triple-ratio digit II 0.250 −0.351

digit III 0.714 −0.032

digit IV 0.028 1.562

digit V 0.111 −1.177

Ph CRa digit II −0.504 0.797

digit III 1.276 −0.161

digit IV 0.245 −0.525

digit V −0.128 0.844

MPh CRb digit II 0.666 0.651

digit III 0.261 −0.111

digit IV −0.244 −0.740

digit V 0.403 −0.122

aCross ratio calculated from the proximal, middle, and distal phalangeal lengths
bCross ratio calculated from the metacarpal, and proximal, middle, and phalangeal lengths

https://doi.org/10.1371/journal.pone.0232397.t004
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Fig 4. Comparisons of triple- and cross-ratios in the hand skeletons of primates. Box plots of the triple- and cross-

ratios of the hand skeletal structures. The triple-ratio (A), MPh cross-ratio (B), and Ph cross-ratio (C) was compared

among primates grouped into cluster 1, 2, or 3, and the triple-ratio (D), MPh cross-ratio (E), and Ph cross-ratio (F)

betweenHomo sapiens and terrestrial quadrupedal monkeys in digits II to V using Repeated Measures ANOVA. White

lines within box plots are median values. �P< 0.05, ��P< 0.01, cluster 1 versus cluster 2;‡P< 0.05, ‡‡P< 0.01, cluster 1

versus cluster 3; †P< 0.05, ††P< 0.01, cluster 2 versus cluster 3; §P< 0.05, §§P< 0.01, humans versus terrestrial

monkeys using Scheffe’s post hoc test.

https://doi.org/10.1371/journal.pone.0232397.g004
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primates during suspensory hand posture or in terrestrial quadrupedal primates during terres-

trial locomotion.

Torque and torque generation efficiency during a cylindrical grip and

suspensory hand posture using our model in Hylobates spp., Ateles sp., and

hamadryas

The orientation of flexor muscle tendons is closely related to the magnitude of the torque on

the joint as well as the bone structures. The positional relationship between the tendons and

bones in the hand changed with finger flexion (identified by MRI; S1 Fig). There was a moder-

ate correlation between the joint angle and normalized moment arms (lm/L) of flexor tendons

at the PIP joint in digits III in P. hamadryas but not inHylobates spp., and Ateles sp., whereas

the correlation was weak between the joint angle and lm/L of flexor tendons at the DIP joint

(Fig 6, S5 Fig, and S4 Table). Moreover, lm/L of FDP, FDS, and intrinsic muscle tendons at the

Fig 5. Torque ratios among proximal interphalangeal (PIP) and metacarpophalangeal (MCP), and carpometacarpal (CMC) joints in digit III

during a cylindrical grip or suspensory hand posture.
ffiffiffiffiffiffiffi
tPIP
tMCP

q
(A),

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

(B),
ffiffiffiffiffiffiffi
tPIP
tCMC

q
(C), and

ffiffiffiffiffiffiffi
tMCP
tCMC

q
(D) during cylindrical grip are compared among

the arboreal group, terrestrial quadrupedal group, andHomo sapiens.
ffiffiffiffiffiffiffi
tPIP
tMCP

q
(E), and

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

(F) during suspensory hand posture was also compared

among brachiating, and terrestrial quadrupedal primates, andH. sapiens. Ph cross-ratio, the cross-ratio calculated from the proximal, middle, and

distal phalangeal lengths; r1, diameter of the cylinder relative to the sum of the lengths of the proximal, middle, and distal phalanges; τCMC, τMCP and

the τPIP torques loaded on the CMC, MCP and PIP joints, respectively; t #MCP and t #PIP the torques loaded on the MCP and PIP joints, respectively,

when the force loaded on the distal phalanx is not considered. �P< 0.05, ��P< 0.01, arboreal or brachiating primates versus terrestrial quadrupedal;
§P< 0.05, §§P< 0.01, arboreal or brachiating primates versusH. sapiens, ¶P< 0.05, ¶¶P< 0.01, terrestrial quadrupedal versusH. sapiens, using

Scheffe’s post hoc test.

https://doi.org/10.1371/journal.pone.0232397.g005
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Fig 6. Correlation between the finger joint angle and the normalized moment arm, torque, or torque ratio

calculated using MR images of digit III during a cylindrical grip and suspensory hand posture. The differences in

lm
L (A), τMCP and τPIP (B)t #MCP, and t #PIP (C), and

ffiffiffiffiffiffiffi
tPIP
tMCP

q
(D),

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

(E), were compared amongHylobates spp., Papio

hamadryas, and Ateles sp. using generalized estimating equations (GEE). Circles, triangles, and squares show the data

ofHylobates spp., Papio hamadryas, and Ateles sp., respectively. Symbols filled with black, R2 of the regression�0.7;

symbol filled with gray, R2 of the regression�0.4; open symbol, R2 of the regression<0.4. Regression equations are

shown in S4, S5 and S6 Tables.

https://doi.org/10.1371/journal.pone.0232397.g006
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MCP joint did not correlate with the joint angle in digit III of P. hamadryas andHylobates
spp., whereas lm/L values of FDP and FDS were positively correlated with the joint angle in

Ateles sp. (Fig 6, S4 Table). By contrast, there were positive correlations between lm/L of FDP

or FDS with the MCP joint angle in digits IV and V inHylobates spp. and digits IV, V, and II

in Ateles spp. (S5 Fig and S4 Table). Our results regarding the normalized moment arms sug-

gest that the efficiency of conversion of the muscle constriction power into torque generation

at the MCP joint increases with flexion of digits IV and V but not digits II and III in brachiat-

ing primates and that at the PIP joint increases with flexion of digits III in terrestrial primates,

whereas it does not increase at the DIP joint in brachiating and terrestrial primates. On the

other hand, τMCP or t #MCP drastically decreased with flexion, and τPIPor t #PIP was not correlated

with the PIP joint angle during cylindrical grip or suspensory hand posture calculated using

MR images of digit III (Fig 6, S5 and S6 Tables).
ffiffiffiffiffiffiffi
tPIP
tMCP

q
or

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

increased or decreased with

flexion of the finger joint respectively, and

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

, calculated from MRI of digit III, was signifi-

cantly larger in P. hamadryas than inHylobates spp., not only during a cylindrical grip but also

during a suspensory hand posture using GEE, as predicted above in our hypothesis (Figs 5 and

6, S5 and S6 Tables). The analysis of other digits provided similar results (S6 and S7 Figs and

S5 and S6 Tables). Similar to the result from our model using bone specimens and CT scan

images, these results suggest that the larger torque distribution on the PIP joint and the smaller

torque distribution on the MCP joint are more advantageous to support the body weight dur-

ing brachiation. Alternatively, the traction forces of FDP (FmMCP(FDP) and F #
mMCP(FDP):

indicates the traction force during suspensory hand posture), FDS (FmMCP(FDS) and

F #
mMCP(FDS)), and intrinsic (FmMCP(INT) and F #

mMCP(INT)) muscles necessary for flexion of

the MCP joint were strongly negatively correlated with the MCP joint angle in Hylobates
spp., Ateles sp., and P. hamadryas (with the exception of FmMCP(INT)), during the adop-

tion of both a suspensory posture and a cylindrical grip (Fig 7, S7 and S8 Tables). This

indicates that the efficiency of torque generation by muscle constriction is improved with

flexion of the proximal phalanx.F #
mMCP(FDP), F #

mMCP(FDS), and F #
mMCP(INT) were larger in

Hylobates spp. than in P. hamadryas at mild flexion, but they were markedly reduced with

an increase in MCP joint angle and became closer to those in Papio spp. during a suspen-

sory hand posture (Fig 7, S8 Table). In addition, during both a suspensory hand posture

and a cylindrical grip, the traction force of the flexor digitorum muscle necessary for flex-

ion of the PIP (FmPIP and F #
mPIP) joint in digit III was negatively correlated with the PIP

joint angle in P. hamadryas and was smaller in P. hamadryas than in Hylobates spp. using

GEE (Fig 7, S7 and S8 Tables). By contrast, there was no significant correlation between

the joint angle and traction force of the FDP muscle necessary for flexion of the DIP joint

(FmDIP) in any of the species (S7 Table). Similar results in regression analyses and GEE

were obtained for the torque and traction force of muscles on the finger joints of digits II

and IV (S6 and S7 Figs and S5–S8 Tables). Taking these findings together, the following

conclusions are suggested: i) Papio hamadryas has a musculoskeletal structure in which

the efficiency of torque generation increases with increasing PIP and MCP joint angles,

whereas Hylobates spp. only exhibit a functional structure similar to this at the MCP joint;

ii) Papio hamadryas can generate torque more efficiently at the MCP and PIP joints, but

the efficiency of torque generation at the MCP joint in Hylobates spp. increases markedly

with flexion and approaches that in Papio spp. at a greater bending angle, particularly dur-

ing a suspensory hand posture.
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Fig 7. Correlation between the finger joint angle and the traction force of digital flexor muscles in digit III during

a cylindrical grip and suspensory hand posture. The differences in FmMCP, FmPIP during a cylindrical grip (A), F #
mMCP,

and F #
mPIP during a suspensory hand posture (B) were compared amongHylobates spp., Papio hamadryas, and Ateles

sp. using generalized estimating equations (GEE). Circles, triangles, and squares show the data ofHylobates spp., Papio
hamadryas, and Ateles sp, respectively. Symbols filled with black, R2 of the regression�0.7; symbol filled with gray, R2

of the regression�0.4; open symbol, R2 of the regression<0.4. Regression equations are shown in S7 and S8 Tables.

https://doi.org/10.1371/journal.pone.0232397.g007
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Torque generated by pulling force of the digital flexor muscle tendon

during a suspensory hand posture in Hylobates spp., and P. hamadryas in

our mechanical study

There was a strong to moderate and positive correlation between PIP joint angle and the torque

on the PIP and MCP joint inHylobates spp. using a cubic polynomial regression (Fig 8A,

Fig 8. Correlation between the PIP joint angle and the torque of MCP or PIP joint and between the PIP joint angle and torque

ratio in digit III during a suspensory hand posture. Torque generated on MCP (A) and PIP (B) joints at different PIP joint angles

by pulling the digital flexor tendons were plotted inHylobates spp., and Papio hamadryas. Symbols filled with black, R2 of the

regression�0.7; symbol filled with gray, R2 of the regression�0.4; open symbol, R2 of the regression<0.4. Regression equations are

shown in S9 Table.

https://doi.org/10.1371/journal.pone.0232397.g008
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S9 Table). The torques on the PIP and MCP joints were stable for less than 68˚ at the PIP angle.

These torques strongly and positively correlated with the PIP joint angle in P. hamadryas accord-

ing to a quadratic polynomial regression (Fig 8A, S9 Table); the equation of the torque calcula-

tion includes the moment arm as a variable, which was approximated by a quadratic term of the

PIP joint angle and a constant term (Fig 6A, Eqs 7 and 9). The torque on the PIP and MCP joints

constantly increased with an increase in the PIP joint angle in P. hamadryas unlike inHylobates
spp. (Fig 8) although the torque could not be compared between P. hamadryas andHylobates by

GEE because the regression equation was different between these species.

Torque change upon grasping tree branches of different sizes during

quadrupedal locomotion in arboreal and terrestrial quadrupedal primates

using our model

Change in torque, which is necessary for supporting the body in a palmigrady posture on a

tree, was calculated for tree branches with different diameters. Torques on PIP and MCP

joints positively correlated with diameter of the branch grasped by primates. Torque on the

MCP joint (r = 0.35 to 1.0) and on the PIP joint (r = 0.8 to 1.0) was greater in the arboreal

primates than in the terrestrials (S8 Fig). However, the differences in torque on PIP and

MCP joints were small between the arboreal and terrestrial primates when primates grasped

a twig (S8 Fig).

Discussion

The intrinsic proportions of rays are linked to the locomotor behavior by

the cross and triple-ratios, which describe the joint torque distribution

specific to a prehensile mode

In this study, we showed that the classifications of primates based on cross-ratio and espe-

cially triple-ratio were similar to the classification based on locomotor behavior. The

smallest cross and triple-ratios were observed in the arboreal cluster, followed by semi-

arboreal and terrestrial clusters, suggesting that the behavioral feature of an arboreal

milieu, such as brachiation and suspensory or quadrupedal locomotion on a tree, was

linked to small triple and cross-ratios in the hand. Brachiators generally have longer mid-

dle and proximal phalanges and a shorter distal phalanx; therefore, the Ph cross-ratio is

lower in brachiating primates than in terrestrial primates. The same relationship was

obtained for the MPh cross and triple-ratios, which represents a synergy of the propor-

tional information on these two cross-ratios. However, relative to the total length, the pro-

portion of the length of each phalanx or metacarpal bone differed among the species, even

within the same cluster (S10 Table), suggesting that the hand can exhibit similar functions

when cross and triple-ratios are similar, even if the proportions of these bones are dissimi-

lar among species of the same genus. Whether during the adoption of a suspensory hand

posture or quadrupedal locomotion in a tree, the joint torque can be calculated using the

same equation; therefore, the similar hand cross and triple-ratios may represent the simi-

lar hand properties in regard to the torque balance between suspensory and quadrupedal

arboreal primates. In the process in which primates adopt suspensory behavior, one the-

ory insists that the shift from above-branch quadrupedal walking to below-branch walking

was attributable to overbalance on the tree branch arising from an increase in the ratio of

the body size to support diamete [3, 22] r. Varecia variegate and Lemur catta walk above

and below branches, and there is a shift in the forelimb kinetics for transition to below-
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branch walking. Specifically, the forelimb of the primates functions as the primary weight-

bearing limb and propulsive organ during below-branch walking, similar to the suspen-

sory hand posture [22]. Meanwhile, our cross-ratio study suggests that a large structural

change in the hand is unnecessary for a shift from above-branch locomotion to below-

branch locomotion from a viewpoint of the torque balance among the finger joints due to

the similar cross-ratio between suspensory species, e.g. Hylobates spp. and arboreal qua-

drupedal species, e.g. Saimiri sciureus. In fact, the torques loaded at the MCP and PIP

joints for the joint angle, which is influenced by the diameter of branches that primates

grasp, were larger in arboreal quadrupedal primates than terrestrial ones. However, the

difference in the torque was smaller with a decrease in the diameter of the substrate or an

increase in the joint angle (S8 Fig) as shown in the correlation of the torque curve between

brachiating and terrestrial primates (Fig 6). These results suggest that small triple and

cross-ratios revealed a commonality of the hand structure among arboreal primates in

terms of the torque distribution on the joints and distinguished it from that of terrestrial

primates. Differences in the patterns of triple and cross-ratios from digits II to V between

H. sapiens and terrestrial quadrupedal primates may be due to differences in the functions

of hands, which are used for grasping/object manipulation and running in quadrupedal

primates or just for performing the former action exclusively. Thus, cross and triple-ratios

may represent the optimized intrinsic proportion of rays for different prehension modes,

such as precision or a power grasp including a cylindrical grasp and brachiation, or quad-

ruped locomotion on the ground or in trees.

Torque generation efficiency and property on the PIP and MCP joints

changing with their joint angles are optimized to the prehensile mode

Suspensory hand posture. By calculating the torque ratio, which is a component of

equations for cross and triple-ratios, it was shown that arboreal primates have a hand struc-

ture in which the torque load is reduced on the MCP joint during the adoption of a suspen-

sory hand posture. In addition, the efficiency of torque generation on the MCP joint

calculated from MRI data of brachiating primates increased markedly upon flexion via tor-

que reduction because of the characteristic intrinsic proportion of rays, while lengthening of

the moment arm also contributed to improving the torque generation efficiency in terrestrial

quadrupedal primates. In the maximum pulling task with a hook grip similar to the suspen-

sory hand posture, the contribution of the phalanx force inH. sapiens was reported to be larg-

est in the proximal phalanx (45%), followed by the middle (34%) and distal (21%) phalanges

[23, 24]. These reports suggest that a large moment is generated on the MCP joint followed

by the PIP joint when a suspensory hand posture is adopted. To overcome a large torque load

on the MCP joint, improvement in the torque generation efficiency with flexion may be ben-

eficial for hanging from tree branches. Meanwhile, the torques on the PIP and MCP joints

were stable in Hylobates spp. during flexion of the PIP joint less than 68˚ in our mechanical

study. Stable torque may stem from the stable moment arm of the flexor muscle on the PIP

and MCP joints at different PIP joint angles (See Eq 8); therefore, our model is consistent

with the torque generation mode measured in our mechanical study. An increase in the tor-

que exerted on the joints, which results from an increase in the force exerted on the phalan-

ges, with flexion may be discouraged in brachiating primates. This is because a large force

produces a large friction between the finger and a tree branch, which may interfere with

swinging. Nevertheless, the torques exerted on the MCP and PIP joints gradually increased

with flexion of the PIP joint due to the lengthening moment arm in P. hamadryas even if the

traction power of the flexor tendons is constant. Taken together, these results suggest that the
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hand morphology in Hylobates spp. has evolved to be suitable for brachiation, whereas that

in P. hamadryas has evolved to be suitable for a firm grip on a cylinder rather than a suspen-

sory hand posture.

Cylindrical grip and terrestrial quadrupedal locomotion. By contrast, the force contri-

bution was smallest in the metacarpal bone, followed by the proximal, middle, and distal pha-

langes in a maximum isometric grip, unlike a hook grip whenH. sapiens grasped a cylindrical

handle measuring 35–50 mm in diameter with the thumb and opposite fingers [25]. The pro-

portions of force exerted by the distal, middle, and proximal phalanges inH. sapiens were

found to be 35.9%, 32.4%, and 31.7%, respectively, in the gripping task [26]. These reports

suggest that the torque generated on the PIP joint should be greater in the gripping task

(power grip) than in the pulling task (hook grip). From this perspective, the hand structure of

terrestrial primates may have evolved to be optimized for a power grasp using digits I to V and

the palm, that is, to increase torque generation efficiency with flexion of the middle phalanx, as

shown in our study. Meanwhile, the olive baboon (P. anubis) used a digitigrade hand posture

at slower speeds with lower ground reaction force (GRF) during terrestrial locomotion [27].

The hand posture transitioned to palmigrade at higher speeds with a higher GRF, in which the

proximal portion of the metacarpal bone makes contact with the ground [27]. In addition, the

peak pressure in the finger was notably higher in Papio spp. at higher speeds than at lower

ones during terrestrial locomotion [27]; thus, the MCP joint moment may be quite large at

higher speeds. Therefore, a reduced torque distribution and high torque generation efficiency

at extension and mild flexion of the fingers may be advantageous for terrestrial quadruped

species, as shown in our study. Kikuchi [28] reported that P. hamadryas has a relatively large

physiological cross-sectional area (PCSA), but the Hylobatidae have a small PCSA in their digi-

tal flexor muscles. This study also suggested that heavier primates have a large PCSA because

they need more muscle force to move, climb, and lift their own bodies [28]. Hence, great mus-

cular strength may also contribute to large torque generation on the PIP and MCP joints for a

cylindrical grip and quadrupedal locomotion in Papio spp. However, the hand skeletal struc-

ture linked with cross and triple-ratios, together with the moment arm of the flexor muscles,

may be important for primates to exert a peculiar behavioral function from the perspective of

torque generation efficiency during a power grasp.

Conclusions

Our study revealed that the cross or triple-ratios in primates, which parameterizes the intrinsic

proportions of rays, can provide information about the optimal structure required for exerting

well-balanced torque on the DIP, PIP, MCP, and CMC joints for various prehensile modes.

Therefore, primates could be classified into the group consistent with their behavior using the

cross- and triple-ratios. Our study suggests that the torque is allocated less in the MCP joint,

especially during flexed posture of the fingers, i.e., a suspensory hand posture, in the arboreal

primates, but especially during extended position, i.e., quadrupedal locomotion, in the terres-

trial primates. Moreover, the torque exerted on MCP and PIP joints were stable under the iso-

tonic muscle contraction of digital flexors during a suspensory hand posture in suspensory

primates at moderate degree of finger flexion. However, in the terrestrial primates, the torque

gradually increased with an increase of the joint angles so that the torque can be sufficiently

generated in extended and flexed hand positions. We deduced that stable and sufficient, but

not exceedingly large torque generation profiles on the MCP and PIP joints during moderate

flexion of fingers in brachiating primates is advantageous for brachiation. This is because the

frictional force, which interferes with the swing motion of the forelimb, is low between the fin-

gers and a tree branch. In contrast, the terrestrial primates can obtain greater propulsive force
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in quadrupedal locomotion or squeezing power in firm grip postures because suitable power

can be obtained in any degree of flexion of the fingers.

Thus, our study provides evidence that the intrinsic proportion of rays is mechanically opti-

mized for varied primate behaviors. Furthermore, the cross-ratio results provide mechanical

information that could be useful for the creation of artificial hands or for understanding pre-

hensile function or locomotion.

Supporting information

S1 Fig. Three-dimensional reconstruction images of the phalanges, metacarpal bones, and

flexor tendons of digit III. InHylobates spp. (A, B), Ateles sp. (C, D), and Papio hamadryas
(E, F), the phalanges, metacarpal bones, and flexor digitorum tendons were reconstructed

from MR images of digit III. Their lateral views at extension (A, C, E) and flexion (B, D, F) are

shown. The positional relationship between bones and tendons was changed by the finger pos-

ture.

(TIF)

S2 Fig. Relationship between the joint torque and bone length in a simple joint model. The

holding torque is proportional to the square of the length of the proximal phalanx. b, length of

the proximal phalanx; f, reaction force (thick arrows) from the central axis of the cylinder to

the bone; r, radius of the cylinder; θ, the angle between f and x-axis; τs, joint torque.

(TIF)

S3 Fig. Calculation of joint torques in the suspensory hand posture. (A) The proximal

interphalangeal (PIP) joint is positioned on the top of the support during a suspensory hand

posture. The center and radius of the cylinder and torques loaded on metacarpophalangeal

(MCP) and proximal interphalangeal (PIP) joints are defined as O, r, τMCP, and τPIP, respec-

tively.~f , the reaction force against the gravity during the suspensory hand posture; lpp, lip, and

ldp, the lengths of the proximal, middle, and distal phalanges; β, γ, and δ, inscribe angles of lpp,

lip, and ldp. (B) The arc of the cylinder is defined as l̂, and the chord and center angle of the arc

l̂ are defined as~l and θ. Holding torques of MCP and PIP during brachiation with or without

using the distal phalanx are calculated by the integral of the infinitesimal torques (dτ), which is

a cross product of~l and~f .

(TIF)

S4 Fig. Relationship between torque ratio and phalangeal lengths. The center and radius

of the cylinder are defined as O, and r, respectively. θ3, proximal interphalangeal (PIP) joint

angle; lpp, lip, and ldp, the lengths of the proximal, middle, and distal phalanges; β, γ, and δ,

inscribe angles of lpp, lip, and ldp; L, the line, which is parallel with the horizontal line (x-axis)

and passes through the center of the proximal interphalangeal joint.

(TIF)

S5 Fig. Normalized moment arms in digits II, IV, and V. Normalized moment arm,
lm
L , was

calculated on distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpopha-

langeal (MCP) joints. Regression equations are shown in S3 Table.

(TIF)

S6 Fig. Correlation between the finger joint angle and torque, torque ratio, or traction

force of digital flexor muscles calculated using MR images of digits II, IV, and V during

cylindrical grip. The differences in
ffiffiffiffiffiffiffi
tPIP
tMCP

q
(A), τMCP (B) and τPIP (C), FmMCP of FDP (D),
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FDS (E) or intrinsic muscles (F), and FmPIP (G) were compared amongHylobates spp., Papio
hamadryas, and Ateles sp. using generalized estimating equations (GEE). Circles, triangles, and

squares show the data ofHylobates spp., Papio hamadryas, and Ateles sp., respectively. Symbols

filled with black, R2 of the regression�0.7; symbol filled with gray, R2 of the regression�0.4;

open symbol, R2 of the regression<0.4. Regression equations are shown in S4 and S6 Tables.

(TIF)

S7 Fig. Correlation between the finger joint angle and torque, torque ratio, or traction

force of digital flexor muscles calculated using MR images of digits II, IV, and V during a

suspensory hand posture. The differences in

ffiffiffiffiffiffiffi
t #MCP
t #PIP

r

(A),t #
MCP (B) t #PIP, (C), F #

mMCP of FDP (D),

FDS (E), or intrinsic muscles (F), and F #
mPIP (G) were compared amongHylobates spp., Papio

hamadryas, and Ateles sp. using generalized estimating equations (GEE). Circles, triangles,

and squares show the data ofHylobates spp., Papio hamadryas, and Ateles sp., respectively.

Symbols filled with black, R2 of the regression�0.7; symbol filled with gray, R2 of the regres-

sion�0.4; open symbol, R2 of the regression <0.4. Regression equations are shown in S6 and

S7 Tables.

(TIF)

S8 Fig. Calculation of joint torques during the quadrupedal locomotion on a tree. (A) A

midpoint of a metacarpal bone is positioned on the top of the support. The center and radius

of the cylinder and torques loaded on metacarpophalangeal (MCP) and proximal interphalan-

geal (PIP) joints are defined as O, r, τMCP, and τPIP, respectively.~f , the reaction force against

the gravity during the arboreal quadrupedal locomotion; α, β, γ, and δ, inscribe angles of the

lengths of the metacarpal bone, and proximal, middle, and distal phalanges. The torques on

(B) MCP and (C) PIP joints, regression equations, and determinant coefficients (R2) were

shown in arboreal (open circle) and terrestrial (open triangle) quadrupedal primates.

(TIF)

S1 Appendix. Information about non-human primate experiment.
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S2 Appendix. Torque calculation on the joints during a power grasp.
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S3 Appendix. Torque calculation on the joints during suspensory hand postures.
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S4 Appendix. Relationship between the cross-ratio and torque ratios between the joints.

(DOCX)

S5 Appendix. Calculation of torque on the joints during quadrupedal locomotion on a tree

branch.
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S1 Table. The information of the primates examined in this study.
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S3 Table. Parameters of MRI sequences.
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S4 Table. Regression equations of the normalized moment arm on the finger joint angle

during a cylindrical grip.

(DOCX)

S5 Table. Regression equations of the torque and torque ratio on the finger joint angle dur-

ing a cylindrical grip.
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S6 Table. Regression equations of the torque and torque ratio on the finger joint angle dur-

ing a suspensory hand posture.
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S7 Table. Regression equations of the traction force of the flexor tendons on the finger

joint angle during a cylindrical grip.
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S8 Table. Regression equations of the traction force of the flexor tendon on the PIP joint

angle during a suspensory hand posture.
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S9 Table. Regression equations of the corrected torque on the PIP joint angle during a sus-
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