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Abstract 

Background: The immunologic tolerant state following allergen immunotherapy is 

associated with the induction of distinct phenotypes of regulatory T-cells or B-cells. IL-

35 was recently identified as an anti-inflammatory cytokine. However, knowledge about 

the roles of IL-35 in patients with allergic diseases is limited.  

Objective: The purpose of this study is to elucidate the role of IL-35 in sublingual 

immunotherapy (SLIT)-induced immune tolerance in Japanese cedar pollinosis patients 

(JCP). 

Methods: The inhibitory effects of recombinant IL-35 (rIL-35) on antigen-induced 

cytokine production were examined using peripheral blood mononuclear cells (PBMC) 

from JCP patients. IL-35-expressing cells in antigen-stimulated PBMC and the effects 

of SLIT on the ratio of IL-35 expressing cells and serum IL-35 concentrations were 

examined. 

Results: rIL-35 suppressed IL-5, IFN-, and IL-17, but not IL-10 production in PBMC 

after exposure to Japanese cedar extract. rIL-35 directly suppressed IL-5 and IL-13 

production in memory CD4+ T-cells or co-culture of DCs/CD4+ T cells. The ratio of IL-

35-expressing T cells and B cells was increased after SLIT. Serum concentration of IL-



35 was elevated during the pollen season in patients treated with SLIT, and it was 

negatively correlated with symptom medication scores (SMS) during the peak JCP 

season.  

Conclusions: This study demonstrated that SLIT induced the allergen-specific 

production of IL-35 from Tregs or Bregs during the pollen season; furthermore, SLIT-

induced IL-35 production may be critical for the induction of immune tolerance. 
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To the editor: 

Japanese cedar pollinosis (JCP) is more than one-third of Japanese population 

experience severe symptoms during the allergy season (1). The efficacy of sublingual 

immunotherapy (SLIT) for JCP has been previously appraised (2). The immunologic 

tolerant state following allergen immunotherapy is associated with the induction of 

distinct phenotypes of regulatory T-cells or B-cells (3). IL-35 was recently identified as 

an anti-inflammatory cytokine (4). However, knowledge about the roles of IL-35 in 

patients with allergic diseases is limited. The purpose of this study is to elucidate the 

dynamic change of SLIT-induced IL-35 in JCP patients. 

The clinical and demographic characteristics of the patients included in this study 

are shown in Table S1. We examined the bioactivity of human recombinant IL-35 (rIL-

35) on antigen-induced cytokines in PBMC. PBMC of patients with JCP were incubated 

with Japanese cedar pollen (JC) extract in the presence or absence of rIL-35 or isotype 

control IgG for 3 days. rIL-35 (0.1-10 μg/mL) significantly inhibited JC extract-induced 

production of IL-17 and IFN-γ dose-dependently. A high concentration of rIL-35 (10 

μg/mL) significantly inhibited JC extract-induced IL-5 production, whereas it 

significantly stimulated IL-10 production (Figure S1A-D).  

A previous study showed that IL-35 has a different effect on INF-γ production in a 

collagen-induced arthritis mice model (5). IL-35 markedly expanded the IFN-γ 



production of CD4+CD25- T cells from the spleen and lymph node with anti-CD3/CD28. 

In contrast, IL-35 markedly inhibited the proliferation and IFN-γ production by 

CD4+CD25– T cells activated with anti-CD3 antibody and APC. Therefore, we examined 

the effect of IL-35 on Th2 cytokine production under various conditions. First, we 

examined the effect of rIL-35 on memory CD4+ T cells. Isolated memory CD4+ T cells 

were incubated with anti-CD3/CD28 in the presence or absence of rIL-35 for 6 h (for 

mRNA) or 3 days (for protein). GATA3 mRNA expression was inhibited at high 

concentrations of rIL-35 (more than 1 μg/mL) (Figure S2A). IL-5 and IL-13 production 

were also significantly inhibited by rIL-35 (10 μg/mL) (Figure S2B-C). In contrast, IFN-

γ production was increased (Figure S2D). Next, we examined the effect of rIL-35 on co-

cultured DCs/CD4+ T cells. Dendritic cells and CD4+ T cells at a ratio of 1:10 were co-

cultured with JC extract in the presence or absence of rIL-35 for 3 days. rIL-35 (10 

μg/mL) inhibited IL-5 and IL-13 production under the co-culture condition (Figure S2E-

F). IFN-γ production was also decreased (Figure S2G).  

Previous studies suggested that IL-35 is expressed in Treg (6) or Breg (7) in 

murine models. Therefore, we analyzed IL-35-expressing CD4+ T cells and CD19+ B 

cells in PBMC collected from JCP patients after completing 12 months of SLIT using 

flow cytometry. In addition, we analyzed IL-35 expression in T cells or B cells, focusing 



on the relationship between IL-35 and IL-10. PBMC from patients after SLIT were 

incubated with JC extract. Representative scattergrams show the expression of CD4, 

Foxp3, IL-10, EBI3, and p35 (Figure S3A). CD4+Foxp3+ cells and CD4+Foxp3-IL-10+ 

cells (Tr1 cells) were double positive for both p35 and EBI3 subunits, representing IL-

35. Notably, a portion of CD4+Foxp3-IL-10- cells were also double positive for p35 and 

EBI3. The isotype control did not show staining for IL-35 positive cells (Figure S3A). 

IL-35-expressing CD19+B cells were examined in PBMC incubated with JC extract. 

Representative scattergrams showed the expression of CD19, IL-10, EBI3, and p35 

(Figure S3B). IL-35 was expressed in CD19+IL-10+ cells (Bregs), shown as double 

positive staining for p35 and EBI3. A portion of CD19+IL-10- cells also expressed IL-35 

(Figure S3B). 

We next examined differences in IL-35-overexpressing cells before and after 

SLIT for JCP. Blood samples were collected from JCP patients before the start of SLIT 

and after completion of 12 months of SLIT (Duration: 15± 2.1 months). All JCP patients 

exhibited clinical symptom improvement after SLIT (n=10). PBMC in JCP patients 

before and after SLIT were incubated with JC extract for 2 days and the IL-35-

expressing T and B cells were examined by flow cytometry. The ratio of IL-35 

expressing T cells (CD4+IL-35+/CD4+ cells) and IL-35 expressing B cells (CD19+IL-



35+/CD19+ cells) significantly increased after SLIT (Figure 1A and B). Next, we 

examined the phenotype of IL-35 expressing T or B cells after SLIT. The ratio of 

Foxp3+IL-35+ (CD4+Foxp3+IL-35+ /CD4+) T cells and IL-10+IL-35+ (CD4+IL-10+IL-

35+ /CD4+) T cells were increased after SLIT (Figure S4A and B), although the ratio of 

Foxp3+ (CD4+Foxp3+ /CD4+) T cells did not change after SLIT (data not shown). The 

ratio of IL-10+IL-35+ (CD19+IL-10+IL-35+ /CD19+) B cells was also increased after 

SLIT (Figure S4C). Moreover, we measured IL-35 protein levels in PBMC before and 

after SLIT. JC extract-induced IL-35 production in PBMC from JCP patients was 

significantly increased after SLIT (Figure 1C). 

Serum IL-35 was then examined in patients with HC, JCP, and SLIT for JCP 

during and outside of the pollen season. Interestingly, serum IL-35 in patients with SLIT 

for JCP was lower compared to HC and JCP outside the pollen season. In addition, 

serum IL-35 in patients with SLIT for JCP was elevated during the peak Japanese cedar 

pollen season compare to patients with JCP (Figure 2A). Finally, we examined the 

relationship between serum IL-35 and clinical symptoms after SLIT during the peak 

Japanese cedar pollen season. There was an inverse correlation between serum IL-35 

and symptom medication score after SLIT during the peak Japanese cedar pollen season 

(Figure 2B).  



A recent study supported that IL-35 inhibited IL-5 and IL-13 production by ILC2 

in the presence of IL-25 or IL-33, and IL-35 inhibited CD40 ligand-, IL-4- and IL-21-

mediated IgE production by B cells. IL-35 therapy has also been studied as a new 

therapeutic agent for the treatment of allergic diseases (9). Our study showed that rIL-35 

has direct inhibitory effects on Th2 and Th17 cytokine production in memory T cells. 

However, the direct inhibitory effect of IL-35 on Th2 is limited because high 

concentrations of rIL-35 protein are required to suppress Th2 cytokines. Previous 

studies support our findings that IL-35 blocks Th2 development by suppressing GATA3 

and IL-4 expression and limiting Th2 proliferation (9). IL-35 can also mediate 

conversion of Th2 cells to Treg, although this can be blocked by IFN-. Therefore, it 

is likely that IL-35 dose not exert its anti-Th2 type inflammation effect via a single 

pathway, rather, it is expected to simultaneously affect a number of different 

inflammatory pathways. 

This study demonstrated that SLIT induced allergen-specific production of IL-35 

from allergen-specific Tregs or Bregs during the pollen season, and that SLIT-induced 

IL-35 production may be critical for the induction of immune tolerance.  
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Figure Legends 

Figure 1. Effects of SLIT on IL-35 expression in T cells or B cells 

(A) PBMC before and after SLIT were incubated with Japanese cedar pollen 

extract for 2 days. PBMC from patients with JCP before and after SLIT were stained for 

CD4, EBI3, and p35 and gated for CD4+ cells. (B) PBMC from patients with JCP before 

and after SLIT were stained for CD19, EBI3, and p35 and gated for CD19+ cells. (C) 



IL-35 concentrations in cell-free supernatants were measured by ELISA. P values were 

determined by the Wilcoxon signed-rank test. n=10. 

 

Figure.2 Effect of SLIT on serum IL-35 concentrations  

(A) Serum IL-35 levels in patients with HC, JCP, and SLIT for JCP during and 

outside of the pollen season were measured by ELISA. (B) The correlation between serum 

IL-35 and symptom medication score after SLIT during the pollen season. The correlation 

was assessed using Spearman’s rank correlation test. N.S; no pollen season, P.S; pollen 

season, SMS; symptom medication score. 
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