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Supplementary materials and methods 1 

Cells 2 

THP-1 cells and murine erythroleukemia cells (MEL) were cultured in RPMI 1640 medium 3 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin. MDS-L cells1 were 4 

cultured in the same medium with 20 ng/ml human interleukin-3 (PeproTech, Rocky Hill, 5 

NJ) and 20 M 2-mercaptoethanol.  6 

 7 

Quantitative PCR  8 

RNA was extracted using either TRIzol reagent (Life Technologies, Carlsbad, CA). 9 

Complementary RNA was synthesized by Superscript 3 reverse transcriptase (Thermo Fisher 10 

Scientific, Waltham, MA). Quantitative PCR was performed using LightCycler480 System 11 

II (Roche, Basel, Switzerland) and a THUNDERBIRD SYBR qPCR mix (Toyobo, Osaka, 12 

Japan). Absolute numbers were calculated using the recombinant DNA of targeted amplicons 13 

for the standard curve. The primer sequences are provided in Supplementary Table 1. 14 

 15 

Western blotting 16 

Total cell lysates were extracted in lysis buffer [50 mM Tris-HCl at pH 8.0, 150 mM NaCl, 17 
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1% Triton X, 1 mM PMSF, 1 mM EDTA, and protease inhibitor cocktail (Nacalai Tesque, 1 

Kyoto, Japan)]. We used primary antibodies anti-LSD1 (C69G12, Cell Signaling Technology, 2 

Tokyo, Japan) and anti-ACTIN (sc-1616, Santa Cruz Biotechnology, Dallas, TX). HRP-3 

conjugated anti-rabbit (NA934v, GE Healthcare, Little Chalfont, UK) or anti-goat (sc-2020, 4 

Santa Cruz Biotechnology) were used as secondary antibodies.  5 

 6 

Cell surface marker assay 7 

For cell surface marker analysis, murine erythroleukemia cells were stained with anti-8 

Ly6G(Gr-1)-PE-Cy7 (1A8; BD Biosciences, San Jose, CA), and human leukemia cells were 9 

stained with anti-CD11b-PE-Cy5 (ICRF44; eBioscience, San Diego, CA) and anti-CD235a-10 

PE-Cy5 (GA-R2; BD Biosciences), and then analyzed by FACS Calibur or CantoII (BD 11 

Biosciences). 12 

 13 

Cytology 14 

Twenty-thousand cells were suspended in phosphate-buffered saline and attached to glass 15 

slides by centrifugation at 800 rpm for 4 minutes using Cytospin 4 (Thermo Fisher Scientific). 16 

The glass slides were stained with a traditional Wright-Giemsa staining. 17 
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 1 

Bisulfite sequencing 2 

DNA methylation analysis was performed as described previously2. Briefly, genomic DNA 3 

was isolated from cells using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), and 4 

bisulfite treatment was performed using the MethylEasy Xceed Kit (Human Genetic 5 

Signatures, Sydney, Australia). Modified DNA was amplified by PCR and cloned into a 6 

pGEM-T Easy Vector System (Promega, Madison, WI). The bisulfite sequencing-specific 7 

primers are listed in Supplementary Table 1. The independent colonies were amplified with 8 

the Illustra TempliPhi Amplification kit (GE Healthcare) or NucleoSpin Plasmid EasyPure 9 

kit (Macherey-Nagel, Düren, Germany), and then sequenced. 10 

 11 

Chromatin immunoprecipitation (ChIP) 12 

ChIP was performed as described previously3. Briefly, after crosslinking with 0.5% 13 

paraformaldehyde for 10 min and quenching with 100 mM glycine for 10 min, cells were 14 

lysed and incubated in lysis buffer (50 mM HEPES pH 7.9, 140 mM NaCl, 1mM EDTA pH 15 

8.0, 10% glycerol, 0.5% NP-40, 0.25% TritonX-10) on ice for 10 min. After intensive washes, 16 

the pellets were resuspended in shearing buffer (0.1% SDS, 1 mM EDTA pH 8.0, 10 mM 17 



6 
 

Tris-HCl pH 8.0) and sonicated using S220 ultrasonicators (Covaris, Woburn, MA). For 1 

precipitation, anti-H3K27ac (39133; Active Motif, Carlsbad, CA), anti-GFI1 (sc-376949; 2 

Santa Cruz Biotechnology), anti-GFI1B (sc-28356X; Santa Cruz Biotechnology), anti-3 

CEBPA (sc-61X; Santa Cruz Biotechnology), anti-TAL1 (ab155195; Abcam, Cambridge, 4 

UK), anti-GATA1 (ab11852; Abcam), anti-RUNX1 (ab23980; Abcam), anti- ERG 5 

(ab133264; Abcam), anti-LSD1 (ab17721; Abcam), anti-CoREST (ab32631; Abcam), anti-6 

HDAC1 (ab7028; Abcam) or anti-HDAC2 (ab7029; Abcam), and Dynabeads Protein G 7 

(Thermo Fisher Scientific) were used. After reverse crosslinking, ChIP DNA was purified 8 

with a MinElute PCR Purification kit (Qiagen) and analyzed by quantitative PCR. 9 

  10 
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Supplementary Figure 1 1 

 2 

Supplementary Figure 1 3 

LSD1 expression levels in erythro-megakaryocytic leukemia cell lines after exposure to 4 

NCD38 or NCD25 5 

Western blot analysis for the protein expression level of LSD1 after 48-hour treatment with 6 

2 M NCD38, 2 M NCD25, or DMSO. Actin was used as a control. Experiments were 7 

performed independently twice and representative data are shown. 8 

  9 
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Supplementary Figure 2 1 

 2 

 3 

 4 

 5 

 6 

Supplementary Figure 2 7 

Expression change of an erythroid marker, CD235a, in erythro-megakaryocytic 8 

leukemia cell lines after exposure to NCD38 or NCD25 9 

FACS analysis of CD235a in HEL, CMK11-5, UT7-EPO and K562 cells after 48-hour 10 

treatment with 2 M NCD38, 2 M NCD25, or DMSO. The mean fluorescence intensity 11 

(MFI) is presented. Experiments were performed independently three times and 12 

representative data are shown. 13 

  14 
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Supplementary Figure 3 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

Supplementary Figure 3 12 

Cytological changes in erythro-megakaryocytic leukemia cell lines after exposure to 13 

NCD38 or NCD25 14 

Morphology of HEL, CMK11-5, UT7-EPO and K562 cells after 48-hour treatment with 2 15 

M NCD38, NCD25 or DMSO. Cytospin slides were stained with traditional Wright-Giemsa 16 

staining. Representative pictures are shown. Scale bar indicates 10 m. 17 
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Supplementary Figure 4 1 

A                                  B 2 

 3 

 4 

 5 

 6 

C 7 

 8 

 9 

 10 

 11 

Supplementary Figure 4 12 

H3K27ac in GFI1-SE, GFI1 transcript, and cell surface markers CD11b and CD235a 13 

in UT7-EPO cells after 72-hour treatment with NCD25 or NCD38 14 

(a) ChIP-qPCR analysis of H3K27ac in GFI1-SE, (b) quantitative PCR analysis of the GFI1 15 

mRNA level and (c) FACS analysis of CD11b and CD235a in UT7-EPO cells after 72-hour 16 

treatment with 2 M NCD38, 2 M NCD25, or DMSO. The Y-axes in (a) and (b) indicate 17 
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the % input of H3K27ac and the % GAPDH, respectively. The mean fluorescence intensity 1 

(MFI) is presented in (c). All experiments were performed independently three times. The 2 

means (±SD) are shown in (a) and (b), and representative data are shown in (c). 3 
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Supplementary Figure 5 1 

A 2 

 3 

 4 

 5 

B 6 

 7 

 8 

 9 

Supplementary Figure 5 10 

GFI1-SE activation and GFI1 expression status in MDS-L and THP-1 cells after 11 

exposure to NCD38 or NCD25 12 

(a) ChIP-qPCR analysis of H3K27ac in GFI1-SE and (b) quantitative PCR analysis of the 13 

GFI1 mRNA level in MDS-L and THP-1 cells after 48-hour treatment with 2 M NCD38, 2 14 

M NCD25, or DMSO. The Y-axes in (a) and (b) indicate the % input of H3K27ac and the % 15 

GAPDH. All experiments were performed independently three times and the means (±SD) 16 

are shown. *p < 0.05, **p < 0.01 and ***p < 0.001. 17 
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Supplementary Figure 6 1 

A.  2 

 3 

 4 

 5 

 6 

B.  7 

 8 

 9 

 10 

 11 

C.  12 

 13 

 14 

 15 

 16 
Supplementary Figure 6 17 

Correlation of CA re-activation with myeloid differentiation in murine erythroleukemia 18 
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(MEL) cells 1 

(a) ChIP-qPCR analysis of H3K27ac in the CA portion, (b) quantitative PCR analysis of the 2 

Gfi1 mRNA level and (c) FACS analysis of Gr-1 in MEL cells after 48-hour treatment with 3 

LSD1 inhibitors including 2 M NCD38 and 2 M NCD25, or DMSO as a control. The Y-4 

axes in (a) and (b) indicate % input of H3K27ac and the relative ratio of Gfi1 mRNA in 5 

NCD38 or NCD25 to that in DMSO after normalization by the internal control Gapdh mRNA. 6 

Mean fluorescence intensity (MFI) is presented in (c). ChIP-qPCR and FACS experiments 7 

were performed independently twice. Quantitative PCR experiments were performed 8 

independently three times. The means (± SD) are shown in (a) and (b), and representative 9 

data are shown in (c). 10 
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Supplementary Figure 7 1 

 2 
Supplementary Figure 7 3 

TF motifs and CpG sites in the CA of GFI1-SE 4 
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Nucleotide sequence alignment between human and mouse of the CA of GFI1-SE. The lines 1 

above the sequences indicate the TF binding motifs that are related to myeloid differentiation. 2 

Several TF binding motifs presented in blue letters are the targets of mutagenesis in the 3 

luciferase assay (Fig. 2b). Five CpG sites in the CA of GFI1-SE are highlighted in red and 4 

each CpG site is numbered. The asterisks indicate the conserved nucleotides. 5 

  6 
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Supplementary Figure 8 1 

 2 

Supplementary Figure 8 3 

DNA methylation status in the CA of GFI1-SE in erythro-megakaryocytic leukemia cell 4 

lines 5 

CpG methylation status by bisulfite sequencing in the CA of GFI1-SE. Transverse rows and 6 

vertical lines represent each single clone and each CpG site, respectively. Solid and open 7 

circles indicate methylated and unmethylated CG sites, respectively. Five CpG sites in the 8 

CA of GFI1-SE are indicated in Supplementary Figure 7. 9 

 10 

  11 
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Supplementary Figure 9 1 

 2 
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 6 

 7 

 8 

 9 

 10 

 11 

Supplementary Figure 9 12 

Generation of GFI1-SE HEL cells by CRISPR-Cas9 13 

Establishment of GFI1-SE sublines of HEL cells. The upper part shows a schematic 14 

diagram of the establishment of subclones harboring a GFI1-SE knockout allele using the 15 

CRISPR-Cas9 genome editing system. The vertical lines indicate the predicted Cas9 16 

cleavage between two sgRNA sequences. The lower part shows Sanger-sequencing results 17 
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of the targeted region of three GFI1-SE sublines (GFI1-SE). 1 

  2 
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Supplementary Figure 10 1 

 2 

 3 

Supplementary Figure 10 4 

Reduction of direct TF recruitment in single TF-motif mutated GFI1-SE in GFI1-SE 5 

cells 6 

ChIP-qPCR analysis for GFI1, GFI1B, CEBPA, TAL1, RUNX1, and GATA1 after 7 

reinduction of each single TF-motif mutant vector or wild-type GFI1-SE vector into GFI1-8 

SE cells. Data are shown as the ratio of % input of indicated TFs on each TF-motif mutated 9 

GFI1-SE to that in wild-type GFI1-SE. Experiments were performed independently three 10 

times and the means (± SD) are shown.  11 
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Supplementary Figure 11 1 

A. 2 

 3 

B.                                       C.          4 

 5 

 6 

 7 

 8 

D. 9 

 10 

 11 

 12 

 13 

 14 
Supplementary Figure 11 15 

Attenuation of myeloid differentiation by NCD38 and NCD25 in CA murine 16 

erythroleukemia (MEL) cells 17 

(a) Schematic diagram of the establishment of subclones harboring the CA allele (MEL-18 
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CA) using the CRISPR-Cas9 genome editing system. The vertical lines indicate the 1 

predicted Cas9 cleavage between two sgRNA sequences. (b, c) Fold change of Gfi1 mRNA 2 

after 48-hour treatment with 2 µM NCD38 and NCD25. The fold change was calculated in 3 

each subline by dividing Gfi1 mRNA level in NCD38 or NCD25 by that in DMSO. 4 

Experiments were performed independently three times and the means (± SD) are shown. (d) 5 

FACS analysis of Gr-1 (Ly-6G). Histogram shows Gr-1 expression on the cell surface of each 6 

subline after 48-hour treatment with 2 µM NCD38, NCD25 or DMSO. The filled histograms 7 

indicate DMSO-treated cells. The mean fluorescence intensity (MFI) is shown. The 8 

experiments were performed independently twice and representative data are shown. 9 
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Supplementary Figure 12 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Supplementary Figure 12 9 

GSEA analysis of the LSD1 signature 10 

The left and right panels present results from comparison between DMSO treatment and 11 

NCD38 treatment in control HEL cells and between control HEL cells and GFI1-SE HEL 12 

cells upon NCD38 treatment, respectively. The normalized enrichment score (NES) and the 13 

false discovery rate (FDR) q-value in GSEA are presented at the bottom of each panel. A 14 

gene set for the LSD1 signature is listed in Supplementary Table 2. 15 

  16 
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Supplementary Figure 13 1 

  2 
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Supplementary Figure 13, continued 1 

  2 
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Supplementary Figure 13 1 

GSEA analysis of gene sets of AML from datasets previously reported by Valk et al. 2 

In each AML cluster signature, the left and right panels present results from the comparison 3 

between DMSO treatment and NCD38 treatment in control HEL cells and between control 4 

HEL cells and GFI1-SE HEL cells upon NCD38 treatment, respectively. The normalized 5 

enrichment score (NES) and the false discovery rate (FDR) q-value in GSEA are presented 6 

at the bottom of each panel. Gene sets for each AML cluster signature are listed in 7 

Supplementary Table 2. 8 

  9 
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Supplementary Table 1. Primers and sgRNAs 1 
Primers for RT-PCR 2 

human GFI1 
Forward CTCGGAGTTTGAGGACTTCTG 

Reverse CCGCTCCATGAGTACGGTTTG 

human GAPDH 
Forward GAAGGTGAAGGTCGGAGTC 

Reverse GAAGATGGTGATGGGATTTC 

murine Gfi1 
Forward CTATCCCTGTCAGTACTGTGGC 

Reverse CTTGAAGCCTGTGTGCTTTCTG 

murine Gapdh 
Forward AGGTCGGTGTGTGAACGGATTTG 

Reverse TGTAGACCATGTAGTTGAGGTCA 

 3 
Primers for ChIP-qPCR 4 

human GFI1-SE 
Forward TGTCATTTTCTTCATTTTGGGGG 

Reverse CCCAGAGCAACTCCTAAGTG 

murine CA 
Forward CCAGCCTAACTGTCAGAGGTAAA 

Reverse TCCGCTCCCCTATTTTCTAAGAG 

 5 
Primers for bisulfite-specific PCR 6 

First half part of CA Forward TAAAGGTGATTTTTGTTTGTTTGAG 

Reverse ATTCTTACCAACTATTAAATTCAACCTATA 

Second half part of 

CA 

Forward TTTATATAATATAAGTTGAGTTTTTTTT 

Reverse AATTAATTTCCTTCAACAACCTAAC 

 7 
sgRNAs for enhancer deletion 8 

human GFI1-SE 
sgRNA #A GAAAGTAGGAAATCTGGTCGGGG 

sgRNA #B GTGAAAAGGCATGAGATGTGTGG 

murine CA 
sgRNA #P TCGTTAATGCGCTATGGCACTGG 

sgRNA #Q CGCTAACAGGGCGCTTAAGGTGG 

 9 
Genotyping primers for detecting enhancer deletion 10 

human GFI1-SE 
Forward CCTGATTCTGTGCCTTCTTCATAC 

Reverse GAGTGTGGTTTGACTGTGGTATC 
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murine CA 
Forward GAAAAATCTGGCATGTCTGTCCC 

Reverse CGGTTTGATTGTTGACACCTGTT 

 1 
Primers for generating vectors for luciferase assays 2 

cloning GFI1-SE 
Forward TTAGAGGAGGCACTGAAAGCAAG 

Reverse CATACTTGTAAGCCCAGCTACTTG 

deletion of non-CA 
Forward CTTACCTTGCTTTCAGTGCCTCC 

Reverse ACACCCTCACGTATCTAATAGGAC 

deletion of CA 
Forward AGTCCTATTAGATACGTGAGGGTG 

Reverse GTTGTTGTTGAGATGGAGTCTTGC 

GFI1/GF1B motif  

mutant #1 

Forward ACTCTAATCCTACTCATTGCCTTCTTTC 

Reverse CTAGAAAACCGTTAAGAAGGAGGAAGTT 

GFI1/GF1B motif  

mutant #2 

Forward AGTGGGAGTAACTCTCCAAACCACTCTC 

Reverse AAGTTGATAAACTTCCTCCTTCTTAACG 

RUNX1 motif mutant 
Forward CTAAGGCCACAGCTGCTAAGGACAAAAG 

Reverse CTAAGGGGACAGCTGCTAAGGACAAAAG 

GATA1 motif mutant 
Forward ACTTTATCTAGGTTTGCAATCAGGAAGC 

Reverse ACTTTACCTAGGTTTGCAATCAGGAAGC 

CEBPA motif mutant 

#1 

Forward CTTTATCTAGGTTTGCCCTCAGGAAGCTGT 

Reverse TCTAAGGCCACAGCTGCTAAGGACAAAAGC 

CEBPA motif mutant 

#2 

Forward AACACTCGTGGAGAAGGTGGAAAGAAGGCA 

Reverse GCTCAGGAAGCACAAGTAGCTGTAAACCAC 

TAL1 motif mutant 
Forward AGGTTGAATCCAAGAGTTTGTAAGAACCAG 

Reverse GTAGCAAACTGGACAGAGCACAGCCTGTCC  

* The mutation in each motif site is underlined. 3 
  4 
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Supplementary Table 2. Gene sets for GSEA analysis 1 

A. REGULATION_OF_GRANULOCYTE_DIFFERENTIATION 2 

ADIPOQ C1QC CUL4A HAX1 HCLS1 IL5 INPP5D 

LEF1 MLL5 OGT PRDM16 RARA RUNX1 TESC 

TRIB1 ZBTB46 
     

 3 

B. KAMIKUBO_MYELOID_CEBPA_NETWORK 4 

ALDH2 ANXA1 CAMP CASD1 CD177 CEBPA CSF2RA 

CYBB DGAT2 EMR1 GLRX HDC HP IL18 

IRF8 ITGAM LBP LCN2 LGALS1 LTF MMP8 

PGD PRTN3 RAB31 S100A8 S100A9 SERPINB1 SPINT2 

 5 

C. Differentially expressed genes found during erythroid development 6 

ALAS2 ANK1 ARPC1B ATP5G1 BDNFOS BTG1 C11orf17 

C19orf48 C19orf6 C1QBP CA1 CAPG CCDC114 CCL18 

CCL2 CCL5 CCT6A CD44 CECR1 CSTB CTSH 

CYBA CYBASC3 CYP27A1 EGR1 ERAF EYA3 FADS2 

FCGRT FCN1 FKBP5 GDF15 GIPC1 GYPC H3F3A 

HBA1 HBB HBG1 HBM HLA‐DQA1 HLA‐DRA HMGN1 

IGHG1 IL8 ILF3 ITLN1 KCNH2 KHSRP KIAA1727 

LIPA LOC388588 LOC399761 LOC730200 LXN LYZ MGC4677 

MMP9 NDUFA3 NOP5/NOP58 NUDT4 PLA2G7 PRG1 PRSS1 

PSAP PSMA2 REXO2 RHAG RNASE1 RPL22L1 SELENBP1 

SLC12A9 SLC25A37 SNHG5 SOD2 STK11 TINP1 TPSAB1 

TRIB3 TSPAN17 TYMS UBE2D3 UQCRQ VAV2 WDR36 

 7 

D. WELCH_GATA1_TARGETS 8 

ABCB10 ALAD ALAS2 ANK1 BACH1 EPB49 FTL 
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GSTT2 HBZ HEBP1 HMBS KLF1 MAFG MAFK 

NFE2 PPOX SLC4A1 STOM TFRC UROD UROS 

ZFPM1  
     

 1 

E. Valk_AML_cluster_7 2 

ANK1 C5ORF4 CLCN3 DNAJC6 EPB41 GAPVD1 GDF15 

GYPE HBBP1 HBZ KCNH2 KEL MYL4 OSBP2 

PDZK1IP1 RAP1GAP RHAG RHD SELENBP1 SLC25A37 SLC2A1 

SLC6A8 SLC6A9 SPTB TAL1 TNS1 TPM1 TRIM10 

 3 

F. Valk_AML_cluster_8 4 

ABCG2 ANK1 ARHGEF12 BCAM C5ORF4 CDC42BPA CDH1 

DCAF11 FECH GYPA GYPB MOSPD1 MXI1 OPTN 

OSBP2 PBX1 RHCE RHD SELENBP1 SLC6A8 SNCA 

TAL1 TMEM158 TNS1 TRAK2 TSPAN5 
  

 5 

G. LSD1 signature 6 

ACVRL1 ARHGEF11 BST2 CALHM2 CCR2 CCSER2 CLEC4A 

CNR2 CORO2A CTSV EFNA4 ERG FCGR1B FCGR2B 

FCRLA FOSL2 GCNT1 GFI1 GFI1B HLA-DMB HVCN1 

HYLS1 IL18R1 IL18RAP IL4I1 ISY1-RAB43 KIAA0513 LAIR1 

LMO4 LOC388242 LPXN METTL7A MILR1 OIT3 OSBPL11 

P2RY14 PI16 PIK3C2B PLD2 PNRC1 PPP1R13B PROCR 

PRR9 RAB43 RASSF4 S1PR1 SELL SIDT2 SIGLEC17P 

SLC35F6 SLC7A8 SNX21 SPTAN1 STAB1 TIGD3 TLR1 

TMEM243 TNFRSF10D TNFSF10 TPM4 TRAF5 ZBTB46 
 

 7 

H. Valk_AML_cluster_1 8 

ATF3 ATP10A BHLHE41 BLNK BMI1 COBLL1 DPP4 
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FHL1 GPR126 IGHM IRF7 JUN KCNA5 KIF17 

LTBP3 MECOM MEF2C MMRN1 NR4A2 PCDH9 PROM1 

PRR16 SLC2A3 SLC38A1 SOCS2 SPAG6 SPIB TRPS1 

 1 

I. Valk_AML_cluster_2 2 

ARHGAP22 CCL1 CLU DOCK1 EZR GLI2 GOLGA8A 

GOLGA8B GPR56 GRB10 GUCY1A3 HBB HOXA5 HOXB2 

IL2RA JAG1 KCNK5 LAPTM4B LPIN1 MAP4K4 PDE3B 

PIM1 PLA2G4A PLS1 PTP4A3 SCHIP1 SRSF8 TRIM16 

TRPC2 
      

 3 

J. Valk_AML_cluster_3 4 

ADCY2 AGTPBP1 AIM1 ARHGAP22 BLVRA CCL1 CEBPD 

COL4A5 DOCK1 ENPP4 FAM30A FCGRT GAS2 GPR56 

IL17RA IL6ST LAPTM4B MAP7 NET1 PBXIP1 PDGFD 

PIEZO2 PLS1 QPRT RAP2A SCN9A SEPP1 SERPINB8 

SH2D1A SMC4 TNFRSF4 TRIM16 WBP5 
  

 5 

K. Valk_AML_cluster_4 6 

ABCB1 B4GALT6 C18ORF1 CAPN2 CD7 CFD CSDA 

CTNNA1 CYFIP1 DRAM1 FZD6 HPGDS HPS4 IGFBP7 

IKZF2 IL4R ITGA4 KLF2 LRP10 NDFIP1 P2RX5 

PMS2L2 PMS2P3 PRR5L RAB13 TRAT1 TRDV2 TRIB1 

TSPAN7 TUBB6 UGT2B28  
   

 7 

L. Valk_AML_cluster_5 8 

CAMK1 CCR1 CD86 EFHD2 EPB41L3 FAM198B GNS 

HNMT IFNGR2 KCNQ1 LILRA1 LILRA6 LILRB1 LILRB2 

LILRB3 MAFB NOD2 PILRA PSAP PTAFR RASSF4 
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SIGLEC7 SIRPA SIRPB1 SLC15A3 SMPDL3A STS TFEB 

TLR8 TYMP UBE2D1 VCAN VDR 
  

 1 

M. Valk_AML_cluster_6 2 

ADCY2 BST2 CAT CD74 CEP70 CORO1A DPPA4 

DPYSL3 DSC2 FAM110B FAM174B FOXC1 FOXF2 FTO 

GPC4 HIGD1A HLA-DPA1 HLA-DRA HOXB3 KIAA0930 LTBP1 

NT5DC3 PECAM1 PIEZO2 PLXNB1 RGS10 RSL1D1 SLC27A6 

SMC4 SNCAIP TTC27 TUBGCP4 XPA 
  

 3 

N. Valk_AML_cluster_9 4 

AK5 BAHCC1 CBFB CD1C CD59 CD81 CHI3L1 

CHST12 CLEC10A CLIP2 CLIP3 COLEC12 DHRS3 EMID1 

FAM105A FAM171A1 FCGR2B ICAM4 MGLL MN1 MSLN 

MTMR11 MYH11 NDE1 NRP1 NT5E PAPSS2 PTPRM 

RPS6KA2 RUNX3 SPARC ST18 TGFBI TPPP3 VSIG4 

 5 

O. Valk_AML_cluster_10 6 

ARHGEF17 AZU1 BAALC BCL7A C3AR1 CD22 CFD 

CHRDL1 CRIM1 EEF1A2 F2RL1 FAM30A FLNB GNAI1 

IGHM LPHN1 MLLT3 MN1 NPDC1 PAWR PIK3C2B 

PPP1R16B PRKD2 RBPMS RNASE2 SETBP1 SMAGP SNED1 

SORBS3 SPON1 SPRY1 SPTBN1 TPM2 
  

 7 

P. Valk_AML_cluster_11 8 

ALDH2 APP ASS1 CD200 CD34 CIITA CISH 

CLIC4 DAB2 DAPK1 DNM1 DPYSL2 DUSP7 EGFL7 

EVL FYN GAS2L1 GIMAP5 GIMAP6 H1F0 IFITM1 

ITGA6 KCNN4 KLF9 KYNU LHFPL2 LPAR6 MDFIC 



33 
 

MYO5C PALM REEP5 SERPINB9 SLC38A1 SPARC ST3GAL5 

VEGFA 
      

 1 

Q. Valk_AML_cluster_12 2 

AFF2 ALADL1 ARHGAP4 AZI2 CALR CST7 FGF13 

GABRE GALNT3 HGF LAMC1 LGALS9 MEG3 MFNG 

MST1 MXRA7 NKX3-2 NRIP1 P4HB PCBP3 PRODH 

PTCH1 PTGDS PTGER1 RAB5B SIX3 SKAP2 STXBP1 

TMEM87A VCL 
     

 3 

R. Valk_AML_cluster_13 4 

ADCY7 ADRA2C BAIAP3 C11ORF21 C11ORF9 C15ORF39 CACNA2D2 

CAV1 FBLN5 GRK5 HSPG2 IL5RA ITGB4 KDM4B 

LAT2 LCP1 NBL1 NCALD PNMT POU4F1 PSD3 

RFL ROBO1 RUNX1T1 SLC25A1 STK32B THSD7A TRH 

VLDLR VOPP1 
     

 5 

S. Valk_AML_cluster_15 6 

ARHGEF3 ATN1 BASP1 CD52 CEACAM8 CTNNA1 DRAM1 

ECHDC2 EPB41L2 FADS1 GNA12 GRAMD1B HOXA10 HOXA9 

HOXB2 HOXB5 HSPB1 IGF2BP2 IGHM KLF9 MEIS1 

NDFIP1 RUNX1 SEL1L3 SFXN3 SH3TC1 SLC16A1 SUCLG2 

TBL1X TNS3 TUBB6 
    

 7 

T. Valk_AML_cluster_16 8 

ADCY9 AK2 AKR7A2 APOC2 BRE C1ORF54 C20ORF103 

C3ORF14 CACNA2D3 CADM1 CD70 CLSTN2 DACH1 GGA2 

ITGA7 KCNE1L KCNN2 MBNL1 PENK RET RPP25 

TDRD7 TGM5 TKTL1 TRPM4 UVRAG 
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 1 

U. Valk_AML_with_11q23_rearranged 2 

APOC2 C1ORF54 C20ORF103 C3ORF14 CACNA2D3 CADM1 CD70 

CES1 DACH1 HIF1A ITGA7 KCNE1L LOC283683 MSLN 

NXT2 P2RY2 PENK RET TGM5 TKTL1 TRPM4 

UVRAG 
      

 3 

V. Valk_AML_with_CEBPA 4 

ARHGEF3 ATN1 B4GALT6 BASP1 CAMP CD38 CD7 

CEACAM8 CEBPA CTNNA1 DLC1 GALC GNA12 HOXA9 

HOXB2 HPGDS HSPB1 IGF2BP2 IGHM IGLL1 ITM2A 

LCN2 LTF MEST MMP8 NDFIP1 PGLYRP1 PRR5L 

SEL1L3 SFXN3 SLC16A1 SUCLG2 TBL1X TNS3 TRDV2 

TRIB1 TUBB6 
     

 5 

W. Valk_AML_with_FLT3_ITD 6 

ADCY2 APP BAHCC1 COL4A5 CYSLTR2 ENPP2 GOLGA8A 

GOLGA8B GPR56 HOXA4 HOXA5 HOXA9 HOXB2 HOXB3 

HOXB5 HOXB6 IL1RAP IL2RA KCNK5 LAPTM4B LCT 

LGALS3BP LYRM1 MAGED1 MAP1A MMP2 MRC1 NR6A1 

PBX3 PDE4B PDGFD PIEZO2 PIM1 QPRT SEPP1 

SMC4 SOCS2 TARP TRIM16 TRPC2 
  

 7 

X. Valk_AML_with_EVI1 8 

AZU1 CD34 CFD CRIM1 DMXL2 EEF1A2 F2RL1 

FAM30A GNAI1 IGHM LPHN1 MN1 NPDC1 PAWR 

PIK3C2B PPP1R16B PXDN RBPMS RNASE2 RNASE3 SEPX1 

SMAGP SORBS3 SPRY1 SPTBN1 
   

 9 
10 
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Supplementary Table 3. List of genes influenced by GFI1-SE depletion 1 
Genes that were induced more than two-fold by NCD 38 but whose inductions were 2 
attenuated by less than 50% via GFI1-SE depletion 3 

Gene Symbol 

Fold Change 

[DMSO vs NCD38 in 

control HEL cells] 

Fold Change 

[Control vs GFI1-SE in 

NCD38 treatment] 

Fold Change 

[DMSO vs NCD38 in 

CMK11-5 cells 

 (Dataset: GSE68348)]4 

LOC101928012 12.35 5.50 13.43 

PRR9 10.62 4.44 7.00 

GFI1 8.05 2.85 9.07 

S1PR1 6.27 2.59 7.39 

SLC45A3 6.24 3.08 3.17 

TEK 5.33 2.28 3.24 

TRGJP2 4.37 1.32 2.41 

STYK1 3.56 1.56 2.73 

ERG 3.54 1.76 4.58 

CD200R1 2.69 1.22 7.98 

RP11-702L15.4 2.36 1.18 NA 

IGFBP4 2.08 0.96 2.47 

RNU6-795P 2.07 0.83 NA 

MIR296 2.06 0.71 NA 

RP11-758M4.4 2.05 0.92 NA 

RP11-661A12.4 2.02 0.91 NA 

RPL23AP32 2.00 0.93 1.99 

 4 
Genes that were attenuated by less than 50% by NCD 38 but whose reductions were 5 
recovered more than two-fold via GFI1-SE depletion 6 

Gene Symbol 

Fold Change 

[DMSO vs NCD38 in 

control HEL cells] 

Fold Change 

[Control vs GFI1-SE in 

NCD38 treatment] 

Fold Change 

[DMSO vs NCD38 in 

CMK11-5 cells 

(Dataset: GSE68348)]4 

THBS1 0.41 1.07 0.33 

CCR4 0.41 0.94 0.91 
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RHD 0.42 0.84 0.15 

FAM19A3 0.46 0.93 0.45 

RNA5SP302 0.49 1.03 NA 

 1 
NA; not available in this data set (GSE68348) due to differences between the platforms used 2 
for separate analyses (Affymetrix vs. Agilent). 3 
 4 
  5 
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