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CaM-dependent protein kinase.5 In particular, CaM is the 
actual Ca2+ sensor for Ca2+-dependent inactivation (CDI) 
of L-type Ca2+ channels (LCC).3,6 Since 2012, variants of 
the genes encoding CaM have been reported to be 
associated with early-onset inherited primary arrhythmia 
syndrome (IPAS), characterized by severe forms of long 

C almodulin (CaM), a ubiquitously expressed calcium 
signaling protein, is encoded by 3 different genes, 
namely calmodulin 1 (CALM1), CALM2, and 

CALM3, located on distinct chromosomal loci.1,2 CaM, as 
a cellular calcium sensor, modulates various proteins, such 
as ion channels,3 ryanodine receptor channels,4 and Ca2+/
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Background:  Cardiac calmodulinopathy, characterized by a life-threatening arrhythmia and sudden death in the young, is extremely 
rare and caused by genes encoding calmodulin, namely calmodulin 1 (CALM1), CALM2, and CALM3.

Methods and Results:  We screened 195 symptomatic children (age 0–12 years) who were suspected of inherited arrhythmias for 
48 candidate genes, using a next-generation sequencer. Ten probands were identified as carrying variants in any of CALM1–3 (5%; 
median age 5 years), who were initially diagnosed with long QT syndrome (LQTS; n=5), catecholaminergic polymorphic ventricular 
tachycardia (CPVT; n=3), and overlap syndrome (n=2). Two probands harbored a CALM1 variant and 8 probands harbored 6 CALM2 
variants. There were 4 clinical phenotypes: (1) documented lethal arrhythmic events (LAEs): 4 carriers of N98S in CALM1 or CALM2; 
(2) suspected LAEs: CALM2 p.D96G and D132G carriers experienced syncope and transient cardiopulmonary arrest under 
emotional stimulation; (3) critical cardiac complication: CALM2 p.D96V and p.E141K carriers showed severe cardiac dysfunction 
with QTc prolongation; and (4) neurological and developmental disorders: 2 carriers of CALM2 p.E46K showed cardiac phenotypes 
of CPVT. Beta-blocker therapy was effective in all cases except cardiac dysfunction, especially in combination with flecainide 
(CPVT-like phenotype) and mexiletine (LQTS-like).

Conclusions:  Calmodulinopathy patients presented severe cardiac features, and their onset of LAEs was earlier in life, requiring 
diagnosis and treatment at the earliest age possible.
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by an exercise stress test, although QTc at rest was border-
line (within 440–450 ms).18 QT intervals were manually 
measured in Lead II or V5 and were corrected for the heart 
rate using Bazett’s formula (QTc).

CPVT was defined as the presence of bidirectional VT, 
polymorphic VT, or VF, which were documented through 
an exercise stress test and/or an ambulatory ECG in the 
absence of QT prolongation. The characteristic QRS 
morphologies were defined as a change in QRS axis every 
other beat, with 2 (bidirectional) or more types of patterns 
(polymorphic) during more than 4 consecutive beats.19

All patients and/or their guardians gave written informed 
consent in accordance with the guidelines approved by 
each institutional review board.

Genetic Testing
Genomic DNA was extracted from peripheral blood 
leukocytes. We have conducted genetic analyses for at 
least 48 genes listed in the Supplementary Table, including 
14 confirmed arrhythmia-related genes, using the HaloPlex 
HS custom panel (Agilent Technologies, Santa Clara, CA, 
USA) and a benchtop-type next-generation sequencing 
machine (MiSeq; Illumina, San Diego, CA, USA). Data 
analyses were performed using SureCall software (Agilent 
Technologies). The variants were then confirmed using 
Sanger sequencing. Parents of patients with CALM1/2 
variants received genetic analysis for the target variants. 
Annotation of CALM1 and CALM2 variants was based 
on accession numbers NM_006888.6 and NM_001743.6, 
respectively.

The variants in CALM1 and CALM2 were classified 
based on their pathogenicity according to the ClinVar 
(https://www.ncbi.nlm.nih.gov/clinvar/), VarSome (https://
varsome.com/), and the American College of Medical 
Genetics and Genomics standards and guidelines.20 In all 
the probands with CALM1 and CALM2 variants, there 
were no pathogenic/likely pathogenic variants found, except 
those of the CALM genes.

Results
We identified a 7 variants in 10 of 195 symptomatic IPAS 
children (5%): 1 CALM1 variant in 2 probands and 6 
CALM2 variants in 8 probands (Table). All of these, 
except 1, were de novo variants. The family members had 
no arrhythmic events or cardiac dysfunction. Figure 1 
shows the topology of the CaM protein: 6 of 7 variants, 
indicated by different colors, are located in the middle of 
either EF hand III or IV. In contrast, p.E46K is located in 
the linker between EF hand I and II. Numbers in blue in 
Figure 1 correspond to each proband (#1–#10 in the Table), 
and different colors indicate the category of phenotypes. 
The names of the original amino acids and their numbers 
are indicated on the top of each symbol, and the mutated 
amino acids are indicated by colored symbols.

The clinical diagnoses of the 10 children with CALM 
variants were LQTS in 5, CPVT in 3, and an overlap of 
both LQTS and CPVT in 2. Their ages at diagnosis ranged 
between 0 and 9 years, with a median of 5 years.

There were 4 major clinical categories: (1) documented 
LAEs (N98S; orange symbol, Figure 1), (2) suspected 
LAEs (yellow symbols, Figure 1), (3) critical cardiac 
complication (red symbols, Figure 1), and (4) complicated 
neurological disorders (E46K, green symbol, Figure 1; 
Table).

QT syndrome (LQTS), catecholaminergic polymorphic 
ventricular tachycardia (CPVT), and/or idiopathic ventricular 
fibrillation (VF).7 The disease entity has been recently 
called “cardiac calmodulinopathy”. However, their pheno-
types vary considerably depending on variant location 
(CALM1, CALM2, or CALM3), and remain unclear due 
to their rarity.8

As mentioned above, 2 major phenotypes of cardiac 
calmodulinopathy are LQTS and CPVT. LQTS, a represen-
tative IPAS, presents prolongation of QT intervals on a 
12-lead electrocardiogram (ECG) and a high risk of sudden 
cardiac death due to ventricular arrhythmias, termed as 
torsade de pointes (TdP).9 The prevalence of LQTS is 
approximately 1 in 2,000,10 and more than 10 genes have 
been reported to be associated with LQTS.11 LQTS caused 
by CALM1, CALM2, and CALM3 is categorized as 
LQT14, LQT15, and LQT16, respectively.11,12 CPVT, 
another form of IPAS, presents exercise-related bidirec-
tional or polymorphic ventricular tachyarrhythmias in 
patients with a normal resting ECG and no structural heart 
disease.13 There are 3 confirmed CPVT variants; CPVT1 is 
caused by heterozygous mutation of the ryanodine receptor 
2 (RYR2) gene,14 whereas CPVT2 and CPVT3 are caused 
by biallelic loss-of-function variants in the calsequestrin 2 
(CASQ2)15 and trans-2,3-enoyl-CoA reductase like (TECRL) 
genes,16 respectively, although occasionally heterozygous 
CASQ2 variants have also been shown to cause CPVT2.15 
In addition, calmodulin genes have been considered as 
important causative genes of CPVT.17

Recently, several calmodulin gene mutations were 
identified in our IPAS cohort that caused severe cardiac 
phenotypes. We have participated in the International 
Calmodulinopathy Registry,8 and several cases reported in 
the present study have been registered. However, because 
detailed clinical features, including ECGs, are not reported 
in the International Calmodulinopathy Registry, we sought 
to investigate the frequency and clinical characteristics of 
calmodulinopathy in our cohort of symptomatic Japanese 
IPAS children.

Methods
Study Cohorts
The study cohort comprised 195 symptomatic children 
with IPAS (age at diagnosis 0–12 years) from 195 unrelated 
families that were registered at Shiga University of Medical 
Science or Kyoto University Graduate School of Medicine 
between 1996 and 2022 for genetic analysis. The inclusion 
criteria was as follows: cardiopulmonary arrest (CPA), 
VF, sustained ventricular tachycardia (VT), high-degree 
atrioventricular block (AVB), personal history of syncope 
under emotional stress, seizures, or arrhythmic events. In 
addition, the child could not have any other gene variant 
related to LQTS/CPVT. The pathological conditions in 
these children were an LQTS phenotype in 43%, CPVT in 
23%, LQTS+CPVT (overlapped) in 1%, idiopathic VF 
(including sudden infant death syndrome) in 12%, high-
degree AVB in 4%, and others in 17% (e.g., sick sinus 
syndrome, seizures, palpitation). The cohort included 26 
children who had lethal arrhythmic events (LAEs) when 
they were less than 6 years of age.

The diagnosis of LQTS was made by either of the 
following clinical features: (1) QTc prolongation on 12-lead 
ECG at rest, namely QTc ≥450 ms for males and ≥460 ms 
for females; and (2) QTc prolongation (≥480 ms) induced 

https://www.ncbi.nlm.nih.gov/clinvar/
https://varsome.com/
https://varsome.com/
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documented polymorphic and bidirectional VTs during 
emotional stress (Supplementary Figure 1B). Even after the 
administration of oral atenolol (50 mg/day) and flecainide 
(80 mg/day), the patient experienced VT/VFs. Oral mexiletine 
(270 mg/day) was added, and an implantable cardioverter 
defibrillator (ICD) was implanted. Since then, there have 
been no VF events under the above medication.

The second case was that of a 3-year-old girl with history 
of a normal delivery and developmental milestones (Proband 
#2; Table). The girl experienced CPA while running. An 

Documented LAEs (4 Probands)
Four preschoolers experienced LAEs without structural 
heart diseases. All of these children had a variant of p.N98S 
in either CALM1 or CALM2.
CALM1 p.N98S (2 Probands)    A 5-year-old boy with 

autism (Proband #1; Table) experienced CPA while running 
and was resuscitated. Repetitive TdPs were documented 
in an emergency room (Figure 2A). His 12-lead ECG at 
rest showed distinct T wave alternans in the V4 lead 
(Supplementary Figure 1A). A Holter ECG recording 

Table.  Children Carrying Mutations of a Calmodulin-Related Gene

Phenotype Proband 
no.

Age of 
onset 

(years)
Sex Gene Amino  

acid Diagnosis
HR 

(beats/
min)

QTc 
(ms) Symptom CHD DD Drug 

therapy ICD

�Documented 
LAEs

1 5 M CALM1 p.N98S CPVT/ 
LQTS

98 467 VF None ±* Atenolol +

Flecainide

Mexiletine

2 3 F CALM1 p.N98S CPVT 92 420 VF None None Nadolol +

3 4 M CALM2 p.N98S LQTS 86 635 VF None None Propranolol −

4 5 M CALM2 p.N98S CPVT/ 
LQTS

70 453 VF None None Propranolol −

�Suspected  
LAEs

5 5 M CALM2 p.D96G LQTS 59 471 Syncope None None Bisoprolol −

6 0 F CALM2 p.D132G** LQTS 102　　 523 CPA None None Carteolol −

Mexiletine

�Critical cardiac 
complication

7 0 M CALM2 p.D96V LQTS 98 689 Advanced 
AVB, 

deceased

VSD, 
ASD

NA Propranolol −

8 0 M CALM2 p.E141K LQTS 61 788 AVB, low 
LVEF, 

deceased

None NA − −

�Developmental 
disorder

9 5 M CALM2 p.E46K CPVT 66 440 Syncope, 
polymorphic

PDA + Carvedilol −

Flecainide

10 9 M CALM2 p.E46K CPVT 50 400 Bidirectional 
VT, 

bradycardia

PDA + Nadolol −

Flecainide

*This proband had autism. **All of them except for CALM2 p.D132G were de novo variants (CALM2 p.D132G was unknown because her 
parents refused genetic testing). ASD, atrial septal defect; AVB, atrioventricular block; CALM1, calmodulin 1; CALM2, calmodulin 2; CHD, 
congenital heart disease; CPA, cardiopulmonary arrest; CPVT, catecholaminergic polymorphic ventricular tachycardia; DD, developmental 
disorder; HR, heart rate; ICD, implantable cardioverter defibrillator; LAEs, lethal arrhythmic events; LQTS, long QT syndrome; LVEF, left 
ventricular ejection fraction; NA, not affected; PDA, patent ductus arteriosus; QTc, corrected QT; VF, ventricular fibrillation; VSD, ventricular 
septal defect; VT, ventricular tachycardia.

Figure 1.    Summarized relationship between variant location and phenotype. The 4 major phenotypes seem to depend on variant 
location. The names of the original amino acids and their numbers are indicated on the top of each symbol, and the mutated amino 
acids are indicated by colored symbols. Red indicates a critical phenotype, orange indicates documented lethal arrhythmic events 
(LAEs), yellow indicates suspected LAEs, and green indicates a developmental disorder. Numbers in blue are case numbers, 
corresponding to the numbers in the Table. CALM1/2, calmodulin 1/2 gene.
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attack while running, and was resucitated with an AED. 
In the emergency room, polymorphic VTs recurred 
(Figure 2D-2). Oral propranolol (2 mg/kg/day) was then 
started and was effective in supressing LAE attacks.

Suspected LAEs (2 Probands)
CALM2 p.D96G    The patient was a 5-year-old boy who 

had a syncopal attack while running (Proband #5; Table). 
Although his 12-lead ECG at rest showed mild QTc 
prolongation (471 ms: Figure 3A, Left), his QT interval 
was markedly prolonged during an exercise test (500 ms at 
recovery 3 min: Figure 3A, Right). The change in T wave 
morphology by exercise was similar to that seen in Type 1 
LQTS (Supplementary Figure 4). This boy was treated with 
bisoprolol (0.5 mg/kg/day), which prevented the recurrence 
of syncopal attacks.
CALM2 p.D132G    Another patient in this group was a 

woman who was 22 years old at the time of genetic diganosis 
of calmodulinopathy (Proband #6; Table). The patient had 
once became cyanotic and experienced transient respiratory 
arrest at the age of 9 month, when she was wailing. She was 
then successfully resuscitated by cardiopulmonary resuscita-
tion. Upon arriving at hospital, her 12-lead ECG showed 
significant QTc prolongation (523 ms; Figure 3B, Left). At 
that time, the patient had been treated with carteolol 
(20 mg/day) and mexiletine (40 mg/day). The carteolol 
slowed her heart rate and effectively supressed arrhythmia 
events, but her QTc was not shortened (508 ms; Figure 3B, 
Right). Her T-wave showed late-appearance T waves, 
similar to those seen in LQT3 or LQT8.22–25 At a later age, 
before genetic testing, an exercise stress test induced no 

automated external defibrillator (AED) documented VF, 
and 3 AED deliveries were able to resuscitate her. Her QTc 
immediately after rescue was within the normal range 
(420 ms), but gradually prolonged to produce repetitive 
polymorphic and bidirectional VT and TdP (573 ms) after 
admission (Figure 2B). Landiolol (8 μg/kg/min) was effective 
at controlling LAEs during the acute phase, and was later 
replaced with oral nadolol 1.5 mg/kg/day. She received 
underwent ICD implantation following her first LAE 
episode. When she stopped taking nadolol, she had another 
VF attack that was successfully treated with ICD.
CALM2 p.N98S (2 Probands)    A 4-year-old-boy (Proband 

#3; Table) had suddenly fallen while playing in the play-
ground of a kindergarden, as reported previously.21 An 
AED documented VF, and an AED shock restored his 
heart rhythm to sinus rhythm (Figure 2C-1). During transfer 
to the hospital, his ECG showed transient VF spontane-
ously (Figure 2C-2), which required a defibrillation shock 
4 times. A 12-lead ECG showed normal sinus rhythm with 
macroscopic T wave alternans and QT prolongation (635–
736 ms; Supplementary Figure 2).21 Amiodarone infusion 
successfully suppressed VF and TdP. Echocardiography 
revealed normal cardiac function without congenital 
anomaly. The patient had been doing well under the initial 
therapy with oral propranolol (90 mg/day).

Another CALM2-N98S carrier was a 5-year-old boy 
with normal development (Proband #4; Table). Two 
elder siblings (an 11-year-old brother and a 9-year-old 
sister) were apparently healthy. His QTc was mildly 
prolonged on normal sinus rhythm (453 ms; Figure 2D-1; 
Supplementary Figure 3). At 5 years of age, he had a VF 

Figure 2.    Documented lethal arrhythmic events (LAEs). All of those experiencing LAEs carried N98S either in calmodulin 1 
(CALM1) or calmodulin 2 (CALM2). (A) A trace from a 5-year-old boy carrying CALM1-N98S. Documented torsade de pointes 
(TdP) is seen following short coupled PVC. (B) A trace from a 3-year-old girl also carrying CALM1-N98S. Electrocardiogram (ECG) 
monitoring documented repetitive polymorphic and bidirectional ventricular tachycardia (VT) and TdP. (C-1) A trace from a 4-year-
old boy carrying CALM2-N98S. Twelve-lead ECG on normal sinus rhythm showed a biphasic T wave and QT prolongation (635 ms). 
(C-2) Automated external defibrillator-documented TdP in the same patient. (D-1) A trace from a 5-year-old boy also carrying 
CALM2-N98S. (D-2) Polymorphic and bidirectional VT, and TdP were documented on ECG monitoring in this child.
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intravenous landiolol followed by oral bisoprolol.
At the age of 3 months, patch closure of the ventricular 

septal defect, direct closure of the atrial septal defect, and 
pulmonary artery debanding were performed. However, he 
died at 6 months of age due to severe heart failure.
CALM2 p.E141K    The patient was a male newborn who 

was diagnosed with fetal hydrops and 2 : 1 AVB at 26 
weeks gestation with markedly prolonged QTcs (atrial rate 
110 beats/min, ventricular rate 55 beats/min, QTc 788 ms; 
Proband #8; Table). Echocardiography revealed that his 
LVEF was markedly decreased (<20%) without any anomaly 
of the cardiac anatomy. He was born preterm and with a 
low birth weight (1,800 g at 34 weeks gestation). An ECG 
at birth showed a profound bradycardia for age (Figure 4B, 
Left) and subsequently 2:1 AVB with QT prolongation 
(atrial rate 124 beats/min, ventricular rate 62 beats/min, 
and QTc 744 ms; Figure 4B, Right).

Although he received pacemaker implantation and 
multiple medical therapies for severe heart failure, he died 
at 1.5 years of age due to uncontrollable arrhythmia and 
refractory heart failure.

ventricular arrhythmias but did induce QTc prolongation 
(536 ms; recovery 4 min; data not shown).

Critical Cardiac Complication (2 Probands)
Two probands started to present severe cardiac phenotypes 
in their fetal period, and died within 2 years.
CALM2 p.D96V    The patient was a 0-year-old boy without 

remarkable family history (Proband #7; Table). Before 
birth, it was identified that he had mild sinus bradycardia. 
He was born at 38 weeks gestation (3,221 g). His 12-lead 
ECG presented bizarre T wave alternans with marked QTc 
prolongation (671 ms; Figure 4A, Left) and 2:1 AVB, which 
developed on the Postnatal Day 5 (Figure 4A, Right).

Echocardiography detected significant heart anomalies: 
a large perimembranous ventricular septal defect, a large 
secundum atrial septal defect, and a left ventricular non-
compaction (Supplementary Figure 5). Although his left 
ventricular ejection fraction (LVEF) was 60%, congestive 
heart failure worsened due to the combination of brady-
cardia and congestive heart failure due to a large amount 
of left to right shunts. Pacemaker implantation was 
performed on Day 10. He was administered continuous 

Figure 3.    Suspected lethal arrhythmic events (LAEs). (A) CALM2-D96G. Mild QTc prolongation was seen at rest, and an exercise 
tolerance test markedly prolonged QT intervals, similar to LQT1. (B) CALM2-D132G. The T wave morphology was similar to that 
in LQT3 or LQT8. HR, heart rate.

Figure 4.    Critical cardiac complications. (A) CALM2-D96V. Bizarre T wave alternans with marked QTc prolongation (689 ms) is 
seen, and 2 : 1 atrioventricular block developed. (B) CALM2-E141K. An electrocardiogram at birth showed profound bradycardia 
(61 beats/min) and 2 : 1 atrioventricular block with markedly prolonged QTc intervals (788 ms).
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experienced LAEs before the age of 6 years. Thus, 35% of 
them were found to carry CALM variants (Table), indicating 
that calmodulinopathy is not a rare disease among LAE 
patients aged <6 years. 

Interestingly, even though being located at the same 
residue N98, the variant N98S produced distinct pheno-
types: CPVT by CALM1 and LQTS by CALM2. Carriers 
of p.N98S variant (Probands #1–#4; Table) experienced 
documented LAEs. The same variants have been reported 
previously.7,26,27 CALM1 p.N98S attenuates calcium-binding 
affinity and exhibits an aberrant interaction with the RYR2 
calmodulin-binding-domain peptide,7 thus producing a 
phenotype showing CPVT. Conversely, CALM2 p.N98S 
was previously reported in a case of LQTS.25 Using human 
induced pluripotent stem cell cell-derived cardiomyocytes 
(iPSC-CMs), we demonstrated that the CALM2 p.N98S 
significantly impairs inactivation of the LCC current, and 
thereby significantly prolongs the action potential duration.27 
The variant mainly affected the CDI through the Ca2+-
calmodulin pathway, and this contrasts with the notion that 
Timothy syndrome-related calcium voltage-gated channel 
subunit alpha1 C (CACNA1C) mutations impaired voltage-
dependent inactivation of LCC, thereby prolonging action 
potential duration and the QT interval.28–30

CALM2 p.D96V (Proband #7) and CALM2 p.E141K 
(Proband #8) caused very critical cardiac phenotypes: not 
only arrhythmic events, but also severe cardiac dysfunction, 
including congenital anomalies. In addition, the phenotypes 
of these children resembled those of classical Timothy 
syndrome, which is caused by CACNA1C p.G406R/G402S.31 
The CALM2 p.D96V variant that was first reported by 
Crotti et al in 201312 was found to slow the CDI of cardiac 
LCC by reducing Ca2+ affinity for the C-domain of CaM.

Boczek et al32 and Wren et al33 previously reported 
CALM1 and CALM3 variants at the E141 locus. We 
identified a variant at the same codon, but in CALM2. The 
clinical features of our CALM2 p.E141K carrier were 
comparable to those of the CALM3 p.E141K carrier,33 and 
were more severe than those of the CALM1 p.E141G 
carrier.32 CALM1 p.E141G has been shown to not only 

Phenotype With Neurological and Developmental Disorders 
(2 Probands)
Two CALM2-E46K carriers from unrelated families 
were first diagnosed with neurological and developmental 
disorders, patent ductus arteriosus (PDA), and CPVT.

One of these was a 5-year-old boy, who was born with a 
very low birth weight (1,098 g, 28 weeks gestation; Proband 
#9; Table). The patient underwent PDA closure surgery at 
58 weeks of age. He experienced repetitive syncopal attacks 
while emotionally excited, as well as a sudden collapse while 
walking, with cyanosis, and was later rescued by AED. His 
ambulatory ECG showed a sinus bradycardia considering 
his age (65 beats/min; Figure 5A, Left) and sustained 
polymorphic and bidirectional VTs (Figure 5A, Right). Oral 
carvedilol (5 mg/day) and flecainide (100 mg/day) were 
prescribed, but the patient could not take medication by 
himself due to severe developmental disorders, including 
autism. His parents usually took care of him, but sometimes 
he failed to take the drugs as prescribed. All subsequent 
VT/VF events occurred in the absence of drugs.

The last patient was a 9-year-old boy (Proband #10; 
Table). This boy was born small for gestational age 
(2,444 g) with trivial PDA. He also had autism and epilepsy, 
and experienced syncope while running. Ambulatory ECG 
showed sinus bradycardia for his age (35–50 beats/min) 
and polymorphic VT (Figure 5B). QTc was not prolonged 
(440 ms). The patient received nadolol (1 mg/kg/day) at the 
diagnosis, and flecainide (100 mg/day) was added for frequent 
premature ventricular contractions from at age of 15 years.

Discussion
The present study reports the frequency and clinical charac-
teristic of patients with variants in the calmodulin gene in 
our cohort of 195 symptomatic IPAS children whose 
genetic background is unclear. With gene panel sequencing, 
we identified 10 probands with 7 different CALM1 or 
CALM2 variants. This frequency of CALM variants (5%) 
was not too low and cannot be overlooked. In particular, 
in our IPAS child cohort there were 26 children who 

Figure 5.    Neurological and developmental disorder in 2 patients. Both were carriers of CALM2-E46K. (A) Electrocardiogram 
(ECG) monitoring records from the first patient. (Left) at rest; (Right) during exercise, showing polymorphic/bidirectional 
ventricular tachycardia (VT). (B) ECG monitoring records from the second patient, showing a sinus bradycardia (Left) and 
polymorphic VT (Right).
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in addition, the effect of flecainide was demonstrated in a 
functional analysis.35 Conversely, additional mexiletine 
was used for LQTS phenotypes. Thus, although β-blocker 
therapy can be used broadly for calmodulinopathy, addi-
tional drug therapy should be chosen in accordance with 
the phenotype. To the best of our knowledge, the onset of 
calmodulinopathy in most cases is in childhood. However, 
several patients had been prescribed anti-arrhythmic drugs 
under suspicion of LQTS/CPVT, without identification of 
pathogenic gene variants. As long as taking appropriate 
drug therapy, the outcome of calmodulinopathy in adults 
would be favorable.

As we recently reported,38 in Japan, a school-based ECG 
screening system is effective for identifying children who 
are at risk of LAEs. Currently, all children undergo an 
ECG recording before entering primary school (age 6 
years). However, in order to detect calmodulinopathy, the 
age of ECG screening should be earlier than 6 years based 
upon our findings.

In conclusion, cardiac calmodulinopathy presents serious 
and potentially lethal phenotypes in very early stages of 
life and therefore requires diagnosis and treatment at the 
earliest age possible.
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