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Abstract
Image quality assessments (IQA) are an important task for providing appropriate medical care. Full-reference IQA (FR-IQA) 
methods, such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), are often used to evaluate imaging 
conditions, reconstruction conditions, and image processing algorithms, including noise reduction and super-resolution 
technology. However, these IQA methods may be inapplicable for medical images because they were designed for natural 
images. Therefore, this study aimed to investigate the correlation between objective assessment by some FR-IQA methods 
and human subjective assessment for computed tomography (CT) images. For evaluation, 210 distorted images were created 
from six original images using two types of degradation: noise and blur. We employed nine widely used FR-IQA methods 
for natural images: PSNR, SSIM, feature similarity (FSIM), information fidelity criterion (IFC), visual information fidelity 
(VIF), noise quality measure (NQM), visual signal-to-noise ratio (VSNR), multi-scale SSIM (MSSSIM), and information 
content-weighted SSIM (IWSSIM). Six observers performed subjective assessments using the double stimulus continuous 
quality scale (DSCQS) method. The performance of IQA methods was quantified using Pearson’s linear correlation coef-
ficient (PLCC), Spearman rank order correlation coefficient (SROCC), and root-mean-square error (RMSE). Nine FR-IQA 
methods developed for natural images were all strongly correlated with the subjective assessment (PLCC and SROCC > 0.8), 
indicating that these methods can apply to CT images. Particularly, VIF had the best values for all three items, PLCC, 
SROCC, and RMSE. These results suggest that VIF provides the most accurate alternative measure to subjective assess-
ments for CT images.

Keywords  Image quality · FR-IQA · Computed tomography · Objective assessment · Subjective assessment · VIF

Introduction

The quality of medical images can vary due to complex 
relationships between various factors, such as equipment 
used, patient conditions, imaging conditions, and image 

reconstruction conditions, even when the same object is 
taken. Lesions may be overlooked if medical images have 
poor quality, and an accurate diagnosis would not be made, 
which is detrimental to patients. Therefore, proper assess-
ment of medical image quality is a critical task in providing 
appropriate medical care.

Image quality assessment (IQA) methods are roughly 
divided into two types: subjective and objective assessments. 
Subjective assessments mean that humans visually judge the 
superiority or inferiority of image quality. For instance, in 
the evaluation of specific protocols or techniques, subjec-
tive assessments are the most reliable and gold standard 
method for IQA because humans are the final image han-
dlers [1–5]. However, subjective assessments are time- and 
labor-consuming [1, 3–8]. In contrast, objective assess-
ments use calculations to determine image quality; thus, 
these methods can be used as an alternative to subjective 
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assessments because they address the problems associated 
with them. Physical indices such as modulation transfer 
function (MTF) and noise power spectrum (NPS) are com-
monly used as objective assessment methods for medical 
image quality. MTF is an index for assessing the resolution 
characteristics of an imaging system, and NPS is an index 
for assessing the noise characteristics of an imaging system. 
These indexes are, by their nature, based on signals obtained 
from dedicated phantoms or structures under defined condi-
tions; therefore, directly assessing the quality of images con-
taining complex structures, such as actual clinical images, 
can be difficult.

In the field of natural images, a lot of research on IQA 
methods for complex structures has been conducted [8–15], 
and their performances have been compared [4–7, 16–20]. 
IQA is classified into three types: full-reference IQA (FR-
IQA), reduced-reference IQA (RR-IQA), and no-reference 
IQA (NR-IQA) [4, 5, 10, 15, 18, 20]. FR-IQA calculates an 
image quality score by comparing a reference image with a 
distorted image. The quality of the distorted image can be 
assessed by using a non-distorted image as the reference 
image. RR-IQA uses partial information from a reference 
image to calculate an image quality score for a distorted 
image. NR-IQA does not use a reference image and instead 
calculates an image quality score based solely on a distorted 
image. An IQA method with good performance judges the 
image quality as high quality in cases where humans per-
ceive it as good, and low quality in cases where humans 
perceive it as poor. In other words, a good IQA method is 
strongly correlated with subjective assessments. In general, 
FR-IQA tends to calculate a highly correlated score with 
subjective assessments because it uses more information 
than NR-IQA [4]. Therefore, FR-IQA is useful when a ref-
erence image with the same geometric position as the target 
image can be acquired.

In the medical imaging field, IQA methods developed for 
natural images, especially traditional FR-IQA methods such 
as peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM), are widely used to evaluate imaging conditions, 
reconstruction conditions, and image processing algorithms, 
including noise reduction and super-resolution technology 
[3, 21–30]. However, because these IQA methods were 
designed for natural images, they may be inappropriate for 
assessing medical images with different properties. It is 
important to verify the applicability of IQA methods devel-
oped for natural images to medical images. Several research 
groups have evaluated the adaptability of FR-IQA methods 
to magnetic resonance (MR) images [31–33]. These studies 
evaluated the correlation between several FR-IQA methods 
and subjective assessments of various distorted MR images. 
Renieblas et al. evaluated several SSIM-related methods for 
distorted X-ray and MR images [34]. Furthermore, Kumar 
et al. investigated whether PSNR and SSIM adequately 

represent human subjective assessments as evaluation 
indices for determining the degree of image compression 
in teleradiology [35]. Currently, these are the only studies 
that have evaluated the adaptability of FR-IQA methods to 
medical images.

One of the major roles of IQA in medical imaging is to 
minimize patient burden while ensuring a certain level of 
image quality. Computed tomography (CT) is a modality 
with a relatively higher exposure dose than other imaging 
examinations; therefore, the importance of IQA is high. 
Nevertheless, no research has extensively investigated the 
applicability of IQA methods to CT images with various 
types of distortions.

Therefore, this study aimed to investigate the correlation 
between objective assessment by existing FR-IQA methods 
and human subjective assessment of CT images and evaluate 
whether FR-IQA methods developed for natural images can 
apply to CT image quality assessment.

In light of the current widespread use of the FR-IQA 
methods for medical image quality assessment, it is crucial 
to determine the reliability of the results obtained from these 
methods and that has great clinical significance. This study 
provides valuable evidence in evaluating the trustworthiness 
of the FR-IQA methods. Furthermore, this research identi-
fies specific methods that are particularly useful for assess-
ing CT image quality, thereby contributing to the advance-
ment of objective assessment techniques in the field.

Materials and Methods

CT Images

Six CT images were selected from open online databases as 
reference images, which were determined by a radiological 
technologist to have no significant artifacts and relatively 
low noise and blurring visually, and confirmed as such by 
another radiologist. The reference images included two 
images each of the head, chest, and abdomen (Fig. 1). The 
head images were obtained from CQ500 dataset [36], and 
the chest and abdominal images were obtained from Dee-
pLesion dataset [37]. The CQ500 dataset provided by the 
Centre for Advanced Research in Imaging, Neurosciences, 
and Genomics (GARING) includes CT images of 491 indi-
viduals. The DeepLesion dataset published by the National 
Institutes of Health (NIH) contains CT images of various 
parts from the head to the legs of 4427 individuals. All the 
reference images obtained from both datasets were unsigned 
16-bit portable network graphics (PNG) format, with image 
matrix size: 512 × 512 and slice thickness: 5 mm. In this 
study, we set the window width/window level to 80/40 
Hounsfield units (HU), 1500/-650 HU, and 350/40 HU for 
the head, chest, and abdomen images, respectively, and then 
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converted them linearly to 8-bit pixel values. The width/
window level was determined in accordance with the clini-
cal conditions actually used at Shiga University of Medical 
Science Hospital.

Distorted Image Creation

The reference images were distorted using two types of 
distortion: Gaussian noise and Gaussian blur. In total, 210 
distorted images were created by adding each or both types 
of distortion with five-grade intensity to the six reference 
images (Table 1 and Fig. 2). ImageJ software version 
1.53e (Rasband W.S., Image J, U.S. National Institute of 
Health, Bethesda, Maryland, USA) was used to create the 
distorted images.

Objective Assessment

This study employed nine widely used FR-IQA methods for 
natural images: PSNR, SSIM [9], feature similarity (FSIM) 
[10], information fidelity criterion (IFC) [11], visual infor-
mation fidelity (VIF) [8], noise quality measure (NQM) 
[12], visual signal-to-noise ratio (VSNR) [13], multi-scale 
SSIM (MSSSIM) [14], and information content-weighted 
SSIM (IWSSIM) [15]. PSNR is derived from mean squared 
error and indicates the ratio between the maximum pixel 

value and the power of the distortion. SSIM is a metric based 
on an assumption that human perception is highly adapted 
for extracting structural information from visual scenes and 
is calculated from three components: luminance, contrast, 
and structure. MSSSIM and IWSSIM were derived from 
SSIM. MSSSIM is calculated by weighting each component 
of SSIM on various scales. Consequently, MSSSIM is more 
flexible than SSIM in incorporating variations in viewing 
conditions. IWSSIM employs a weighted pooling strategy 
to estimate global image quality after local image quality 
measurements and uses the MSSSIM for local image qual-
ity measurements. FSIM is based on the fact that humans 
recognize an image mainly by its low-level features. FSIM 
computes quality estimates using phase congruency (PC) 
as the main feature and gradient magnitude (GM) as the 
complementary feature. IFC quantifies the amount of mutual 
information shared between the reference and distorted 
images. VIF is developed based on IFC and is calculated by 
normalizing IFC with reference image information. NQM is 
a human visual system (HVS) model-based index calculated 
by modeling the effect of additive noise on human percep-
tion systems. Similar to NQM, VSNR is an HVS model-
based method. It is calculated based on both low-level and 
mid-level properties of human vision.

In subjective assessments, the image quality of back-
ground areas with no diagnostic significance is expected 
to be almost ignored and not considered in the assessment, 
whereas, in objective assessments, the image quality of 
background areas affects the results to some extent. In this 
study, objective assessments were conducted on cropped 
images in which the background areas were minimized in 
order to purely focus on the distortion of the subject (Fig. 3).

Fig. 1   The six cases used as 
reference images

Table 1   Summary of distortions applied to reference images

Distortion type Parameter Intensity

Gaussian noise Standard deviation σnoise = 6, 9, 14, 21, 30
Gaussian blur Standard deviation σblur = 0.6, 0.9, 1.4, 2.1, 3.0
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Subjective Assessment

Double stimulus continuous quality scale (DSCQS), a 
type of dual stimulation method proposed by the Inter-
national Telecommunication Union Radiocommunica-
tion sector (ITU-R) Recommendation BT.500 [38], was 
used as the subjective assessment method. ITU-R BT.500 
provides methodologies for the subjective assessment of 
image quality, including general testing methods, grading 
scales used during assessments, and viewing conditions 
recommended for carrying out assessments. Several IQA 
studies have performed subjective assessments based on 
this recommendation [5–7, 31, 39–42]. Figure 4 shows the 
assessment flow of the DSCQS method. Both reference 
and distorted images were presented in pairs alternately 
twice. An assessment score was assigned to both images 
at the second presentation. Observers were blind to which 
image was the reference image, and the display order for 
each image pair was random. The observers marked qual-
ity scores for both images on a continuous scale (Fig. 5). 
The marked quality scores were then normalized from 0 
to 100, and the difference between the quality scores for 
the pair of images was calculated. The DSCQS score was 
calculated by averaging these quality differences for all the 
observers. The DSCQS score is derived from the quality 
difference; thus, a smaller value indicates better image 
quality, and a larger value indicates poorer image qual-
ity. Thanks to the dual-stimulus method and continuous 
scale, DSCQS is suitable for discriminating minute dif-
ferences in image quality and is widely used in IQA for 
medical images [42–44]. However, because the reference 

and distorted images are presented twice separately, the 
assessment time is longer than for other subjective assess-
ment methods. Here, we set the presentation time for each 
image to 5 s and the image display interval to 3 s.

For all FR-IQA methods used, higher and lower values 
indicate better and poorer image quality, respectively, which 
is inversely related to the DSCQS score. To interpret the 
results intuitively and easily, we defined the subjective score 
using the following formula:

Four radiologists and two radiological technologists 
were involved in the subjective assessment. Regarding 
the viewing conditions, the monitor was a two-megapixel 
medical monitor (RadiForce RX250, EIZO Corporation, 
Ishikawa, Japan), the illumination surrounding the dis-
play was set to 50 lx or less, and the viewing distance 
was arbitrary. The order of the displayed image pairs was 

(1)Subjective Score = 100 − DSCQS Score.

Fig. 2   Examples of generated 
distorted images. a original 
image, b σnoise = 14 and σblur = 0, 
c σnoise = 30 and σblur = 0, d 
σnoise = 0 and σblur = 1.4, e 
σnoise = 0 and σblur = 3.0, f 
σnoise = 30 and σblur = 3.0

Fig. 3   An example of cropping process to minimize background areas
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randomized for each observer. At the beginning of the 
assessment, a training session was conducted to stabilize 
the observer’s opinion, using another case different from 
the six cases used for the assessment.

To assess the inter-rater variability of the subjective 
assessment, the intraclass correlation coefficient (ICC) was 
employed. There are several types of ICCs, depending on 
their intended use. In this study, we used ICC(2,1), which is 
the case for absolute agreement and single measurements. 
ICC(2,1) is a commonly used measure to evaluate agreement 
among multiple observers. The ICC(2,1) values range from 0 
to 1, where higher values indicate greater agreement among 
observers. ICC(2,1) was calculated using SPSS version 25 
(IBM Corp., Chicago, IL, USA).

Performance Evaluation of FR‑IQA Methods

Pearson linear correlation coefficient (PLCC), Spearman 
rank order correlation coefficient (SROCC), and root-
mean-square error (RMSE) are generally used to evalu-
ate IQA performance in terms of the prediction accuracy, 
monotonicity, and consistency of the models, respectively 
[5, 8–11, 13–16, 18, 20, 31, 39, 41, 42, 45]. The scores 
predicted using FR-IQA methods often do not correlate 

linearly with subjective assessment scores. PLCC and 
RMSE can be applied to linear systems; therefore, the 
scores require correction to eliminate nonlinearity using 
logistic regression as a pre-processing step. Here, we used 
five-parameter logistic regression [4, 5, 8, 15, 16, 19, 42, 
45], which regression function is given as:

where Y is the image quality score calculated by each IQA 
method; YL is the image quality score after regression; and 
β1, β2, β3, β4, and β5 are the regression model parameters. 
After the regression process, PLCC, SROCC, and RMSE 
were calculated using the following equations:

where X is the subjective assessment score, d is the differ-
ence between X and Y, and n is the total number of images 
used in the evaluation. In this study, we applied these three 
metrics to 210 distorted images for overall FR-IQA per-
formance evaluation. In addition, these metrics were also 
applied to 30 noise-distorted images without additional 
blurs, another 30 blur-distorted images without additional 
noises, 70 head images, 70 chest images, and 70 abdominal 
images to evaluate the performance of the FR-IQA methods 
for specific types of distortion and specific regions.

We also conducted statistical testing to confirm which 
differences between IQM performances were statistically 
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significant. In the field of IQA, the F-test is usually per-
formed on the residuals between the IQM scores after the 
regression and the subjective scores [4, 16, 32, 41]. The 
null hypothesis is that the data in the two IQA residual 
vectors have the same variance and they are statistically 
indistinguishable. If the null hypothesis is rejected after 
performing a one-tailed test at 5% significance level, then 
the performance of the two IQA methods is statistically 
significantly different.

Finally, we compared the average computation time 
required to assess an image for each FR-IQA method. We 
used 210 distorted images of 512 × 512 pixels before crop-
ping and the average value of five calculations to calculate 
time. The CPU of the PC was an Intel Core i5-10210U with 
8.00 GB memory, and the software platform was MATLAB 
R2021b (The MathWorks, Inc., Natick, Massachusetts). 
The MATLAB source code for all FR-IQA methods, except 
PSNR and SSIM, was obtained from the original authors. 
We calculated PSNR and SSIM using the built-in functions 
of MATLAB.

Results

Subjective Assessment

Figure 6 shows the results of the subjective assessment of 
each distortion factor. The cases used in these results were 
independently distorted images that did not contain any 
other distortion factors. In other words, in Fig. 6a, only noise 
was added to the image, and the blur was fixed at σblur = 0. 

In Fig. 6b, only blur was added, and the noise was fixed at 
σnoise = 0. The assessment results were obtained for the data 
of 30 cases because five levels of distortion intensity were 
applied to the six cases. The subjective score decreased as 
the distortion intensity increased for both the noise and blur. 
In addition, the rate of decrease became lower as the distor-
tion intensity increased.

The obtained ICC(2,1) value for our subjective assess-
ment was 0.68 (95% confidence interval: 0.61–0.74), indi-
cating a moderate level of agreement among the observers. 
The 95% confidence interval suggests that the true ICC value 
falls between 0.61 and 0.74 with a high degree of certainty.

IQA Performance Comparison

Figure 7 shows scatter plots of the relationship between the 
objective scores calculated by each FR-IQA method and 
the subjective scores for the 210 distorted images. Table 2 
compares the PLCC, SROCC, and RMSE results. All FR-
IQA methods had PLCC and SROCC values higher than 
0.8, indicating strong positive correlations. Particularly, 
VIF exhibited the best performance for all three indices: 
PLCC = 0.967, SROCC = 0.968, and RMSE = 5.380. In 
contrast, the SSIM was inferior to other FR-IQA meth-
ods: PLCC = 0.817, SROCC = 0.882, and RMSE = 12.075. 
Table 3 shows the statistical significance testing results 
among the nine FR-IQA methods for all 210 distorted 
images. The symbol “1” means that the method in the row 
is statistically better than the method in the column, the 
symbol “-” means that it is statistically indistinguishable, or 
the symbol “0” means that it is statistically worse. VIF and 

Fig. 6   Results of subjective assessment for each distortion factor: a Gaussian noise and b Gaussian blur. Dots represent mean subjective scores 
of six observers; error bars represent standard deviation
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IWSSIM performed statistically better than the other IQM 
methods. In contrast, SSIM was statistically worse than any 
other IQM method.

Table  4 compares the performance of the FR-IQA 
methods on 30 images degraded by each distortion type 
alone. Regarding noise, VIF had the best performance for 

PLCC and RMSE, and VSNR had the best performance for 
SROCC. Regarding blur, VIF had the best performance for 
PLCC and SROCC, and IWSSIM had the best performance 
for RMSE. Table 5 shows the statistical significance test-
ing results among the nine FR-IQA methods for a particular 
distortion. Each entry in the table is a codeword consisting 

Fig. 7   Scatter plots of the relationship between subjective scores and objective scores calculated by nine FR-IQA methods for 210 distorted images

Table 2   PLCC, SROCC, and RMSE values between subjective scores and objective scores by nine FR-IQA methods for 210 distorted images

The best performance values in each row are highlighted in boldface

PSNR SSIM FSIM IFC VIF NQM VSNR MSSSIM IWSSIM

PLCC 0.918 0.817 0.881 0.944 0.967 0.878 0.928 0.931 0.960
SROCC 0.905 0.882 0.886 0.948 0.968 0.890 0.921 0.919 0.958
RMSE 8.303 12.075 9.912 6.913 5.380 10.023 7.831 7.631 5.874
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of two symbols. The symbol location within a codeword rep-
resents each type of distortion in the following order, from 
left to right: Gaussian noise and Gaussian blur. Regarding 
noise, IFC, VIF, VSNR, MSSSIM, and IWSSIM performed 
statistically better than the other four IQM methods. Regard-
ing blur, VIF had the highest number of statistical superior-
ity over the other methods and was statistically superior to 
PSNR, SSIM, IFC, NQM, and VSNR.

Table 6 compares the values of PLCC, SROCC, and 
RMSE for the head (70 images), chest (70 images), and 
abdomen (70 images). Regarding the head images, VIF 
had the best performance for PLCC and RMSE, and IWS-
SIM had the best performance for PLCC and SROCC. 
Regarding the chest images, VIF had the best performance 
for all indices, and IWSSIM also had the best performance 
for PLCC. Regarding the abdominal images, IWSSIM had 
the best performance for PLCC and SROCC, and VIF had 
the best performance for RMSE. Table 7 shows the statis-
tical significance testing results among the nine FR-IQA 
methods for a particular target site. Each entry in the table 
is a codeword consisting of three symbols. The symbol 
location within a codeword represents each target site in 
the following order, from left to right: head, chest, and 
abdomen. Regarding head and abdomen, VIF and IWS-
SIM had the highest number of statistical superiority over 

the other methods and was statistically superior to PSNR, 
SSIM, FSIM, NQM, VSNR, and MSSIM. Regarding chest, 
VIF and IWSSIM also had the highest number of statisti-
cal superiority over the other methods and was statistically 
superior to PSNR, SSIM, FSIM, IFC, VSNR, and MSSIM.

Table 8 shows the average computation time required 
to calculate an image’s score using each FR-IQA method. 
PSNR had the shortest time (0.0041 s), while VIF had the 
longest (0.6183 s), with a difference of 0.6142 s.

Discussion

In this study, subjective assessments using DSCQS method 
were used as the ground truth to evaluate the performance of 
the FR-IQA methods. We assessed the images distorted by 
two types of degradation factors: Gaussian noise and Gauss-
ian blur. Gaussian noise makes low-contrast objects difficult 
to percept and degrades image quality in terms of graininess, 
whereas Gaussian blur obscures small objects and fine details 
and degrades image quality in terms of sharpness [31, 46]. 
The results in Fig. 6 reflect these facts and support that sub-
jective assessments were properly conducted. In addition, 
as the intensity of distortion increased, the subjective rating 
decreased, and the rate of decrease progressively declined, 

Table 3   Statistical significance testing results based on prediction 
residuals of nine FR-IQA methods for all 210 distorted images. The 
symbol “1”, “-”, or “0” means that the method in the row is statisti-

cally (with 95% confidence) better, indistinguishable, or worse than 
the method in the column, respectively

PSNR SSIM FSIM IFC VIF NQM VSNR MSSSIM IWSSIM

PSNR - 1 1 0 0 1 - - 0
SSIM 0 - 0 0 0 0 0 0 0
FSIM 0 1 - 0 0 - 0 0 0
IFC 1 1 1 - 0 1 - - 0
VIF 1 1 1 1 - 1 1 1 -
NQM 0 1 - 0 0 - 0 0 0
VSNR - 1 1 - 0 1 - - 0
MSSSIM - 1 1 - 0 1 - - 0
IWSSIM 1 1 1 1 - 1 1 1 -

Table 4   PLCC, SROCC, and RMSE values between subjective scores and objective scores by nine FR-IQA methods for 30 distorted images by 
Gaussian noise without additional blur and another 30 distorted images by Gaussian blur without additional noise

The best performance values in each row are highlighted in boldface

PSNR SSIM FSIM IFC VIF NQM VSNR MSSSIM IWSSIM

Noise PLCC 0.958 0.854 0.854 0.959 0.972 0.896 0.971 0.966 0.963
SROCC 0.918 0.851 0.887 0.939 0.970 0.912 0.971 0.959 0.951
RMSE 10.351 17.547 12.953 6.632 5.341 10.014 6.890 10.960 6.328

Blur PLCC 0.945 0.858 0.975 0.964 0.985 0.964 0.934 0.966 0.982
SROCC 0.961 0.847 0.964 0.946 0.982 0.961 0.934 0.964 0.969
RMSE 8.099 16.471 6.790 8.431 4.937 9.477 8.506 7.945 4.930
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approaching a plateau. We set the maximum distortion inten-
sity values to σnoise = 30 and σblur = 3.0. Considering this 
result, even if the distortion intensity was increased further, 
we expected no significant differences in the obtained subjec-
tive scores. Therefore, we considered that the distortion inten-
sities used in this study cover a wide range of degradation 
that humans can perceive in medical images, and we believe 
that the settings of the distortion intensities were appropriate.

This study aimed to evaluate whether FR-IQA methods 
developed for natural images could be adapted to the quality 
assessment of medical images, such as CT images. Objective 
scores by all the nine FR-IQA methods used in this study had 
strong positive correlations (PLCC and SROCC) with the 
subjective assessment scores (Table 2). This suggests that 
FR-IQA methods developed for natural images can be used 
to assess the quality of CT images. Among the nine FR-IQA 
methods, VIF had the best performance, with the highest 
PLCC and SROCC and the lowest RMSE (Table 2). In sta-
tistical significance testing, VIF was also statistically better 
than other FR-IQA methods except for IWSSIM (Table 3). 

These results indicate that VIF is one of the most accurate 
methods for estimating CT image quality as a surrogate for 
subjective assessments. VIF was also shown to perform best 
in a previous study comparing subjective assessment with 
FR-IQA for MR images [32]. Furthermore, in the field of 
natural images, several studies have reported that VIF has 
superior performance for some datasets [6, 16, 17], particu-
larly for multiple distortion databases [4]. Hence, we think 
that VIF is a method that expresses human perception well 
in the entire imaging field including all kinds of medical and 
natural images. Excluding IFC, VIF is unique among the 
nine IQA methods as it calculates a quality score based on 
the mutual information between a reference and a distorted 
image. IFC, a mutual information-based method like VIF, 
had the third highest correlation coefficient and third lowest 
RMSE among the nine FR-IQA methods. These approaches, 
based on mutual information, are considered useful in FR-
IQA. Unlike IFC, VIF performs normalization based on ref-
erence image information, suppressing content dependence. 
This could explain why VIF outperformed IFC.

Table 5   Statistical significance testing results based on prediction 
residuals of nine FR-IQA methods for 30 images degraded by each 
distortion type alone. Each entry in the table is a codeword consist-
ing of two symbols. The symbol location within a codeword repre-
sents each type of distortion in the following order: [Gaussian noise, 

Gaussian blur]. The symbol “1”, “-”, or “0” means that the method 
in the row, for a particular distortion, is statistically (with 95% confi-
dence) better, indistinguishable, or worse than the method in the col-
umn, respectively

PSNR SSIM FSIM IFC VIF NQM VSNR MSSSIM IWSSIM

PSNR - - - 1 - - 0 - 0 0 - - 0 - 0 - 0 0
SSIM - 0 - - - 0 0 0 0 0 - 0 0 - 0 0 0 0
FSIM - - - 1 - - 0 - 0 - - - 0 1 0 - 0 -
IFC 1 - 1 1 1 - - - - 0 1 - - - - - - -
VIF 1 1 1 1 1 - - 1 - - 1 1 - 1 - - - -
NQM - - - 1 - - 0 - 0 0 - - 0 - 0 - 0 -
VSNR 1 - 1 - 1 0 - - - 0 1 - - - - - - 0
MSSSIM 1 - 1 1 1 - - - - - 1 - - - - - - -
IWSSIM 1 1 1 1 1 - - - - - 1 - - 1 - - - -

Table 6   PLCC, SROCC, and RMSE values between subjective scores and objective scores by nine FR-IQA methods for 70 head images, 70 
chest images, and 70 abdominal images

The best performance values in each row are highlighted in boldface

PSNR SSIM FSIM IFC VIF NQM VSNR MSSSIM IWSSIM

Head PLCC 0.931 0.762 0.932 0.957 0.968 0.899 0.939 0.913 0.968
SROCC 0.942 0.788 0.926 0.958 0.953 0.932 0.949 0.907 0.959
RMSE 9.840 15.247 11.689 7.909 6.780 11.317 7.800 9.259 7.505

Chest PLCC 0.945 0.949 0.896 0.964 0.982 0.972 0.967 0.961 0.982
SROCC 0.939 0.935 0.885 0.969 0.985 0.965 0.966 0.926 0.978
RMSE 7.318 7.645 9.974 7.124 4.519 11.086 5.440 5.677 4.940

Abdomen PLCC 0.938 0.795 0.943 0.961 0.976 0.959 0.884 0.933 0.977
SROCC 0.897 0.784 0.945 0.953 0.969 0.963 0.857 0.912 0.970
RMSE 7.513 12.104 7.655 5.484 4.522 7.101 9.672 7.532 4.771
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SSIM, now widely used to assess medical images, showed 
the lowest performance (Table 2). This is similar to previous 
studies that targeted MR images [32]. MSSSIM, an index 
derived from SSIM, showed performance improvement 
compared to SSIM. While SSIM is a single-scale approach, 
MSSSIM is a multi-scale approach. Based on the assump-
tion that the optimal scale depends on conditions such as 
resolution and the distance between the image and the view-
ing point, MSSSIM is calculated by repeatedly low-pass fil-
tering and down-sampling image pairs and weighting each 
component on various scales. This suggests that the single 
scale used in SSIM may not be optimal for this study’s image 
resolution and observation distance conditions. Moreover, 
among the SSIM-based methods used, IWSSIM performed 
the best. Both SSIM and MSSSIM employ a method that 
averages the scores calculated from each pixel to estimate 
global image quality, assuming each pixel has the same 
importance. In contrast, IWSSIM employs an information 
content-weighting strategy to estimate global image quality, 
which calculates weighted values for regions that humans 
are likely to pay attention to perceptually. Incidentally, 
IWSSIM uses MSSSIM for local quality estimation, which 
is also flexible to scale variations as MSSSIM. IWSSIM 
showed the second-best performance among the nine FR-
IQA methods (Table 2) and was statistically better than other 
FR-IQA methods, similar to VIF (Table 3). This indicates 
that the pooling strategy used in IWSSIM performed excel-
lently. Therefore, if SSIM-based methods are used, IWSSIM 
is the best choice because it is more flexible for scale and 
calculates a weighted global score.

In this study, even when the data were evaluated by divid-
ing each distortion type and target site (Tables 4, 5, 6, and 7), 
VIF and IWSSIM, which demonstrated high performance in 
the overall evaluation results, showed consistently high per-
formance and little bias due to distortion types or target sites.

In previous studies, FR-IQA methods for medical images 
evaluated single distorted images by each of several dis-
tortion types [31–35]. However, actual image distortion is 
caused by a mixture of various factors. In this study, we 
used multiple distorted images, including noise and blur, and 
achieved an evaluation of more complex distortion. There-
fore, we believe that this study’s results can be applicable to 
more clinically realistic situations.

The biggest disadvantage of the FR-IQA method is that 
the image quality is evaluated using a reference image, 
which may be difficult to obtain in clinical situations. Tech-
niques for directly evaluating clinical CT image quality 
belong to the NR-IQA category, and research in this cat-
egory is also active. However, since the FR-IQA method 
mainly calculates the score from some kind of difference or 
similarity between the evaluation image and the reference 
image, it can be used in a wide range of applications regard-
less of the type of deterioration or target part. Therefore, 
FR-IQA is frequently used to evaluate imaging conditions, 
reconstruction conditions, and image processing algorithms, 
including noise reduction and super-resolution technology. 
However, since these indices were originally developed for 
natural images, this study’s motivation was to verify whether 
these indices can also be used to evaluate medical images. 
The results obtained in this study will support the reliability 

Table 7   Statistical significance testing results based on prediction 
residuals of nine FR-IQA methods for 70 images by each target site. 
Each entry in the table is a codeword consisting of three symbols. 
The symbol location within a codeword represents each target site in 

the following order: [head, chest, abdomen]. The symbol “1”, “-”, or 
“0” means that the method in the row, for a particular target site, is 
statistically (with 95% confidence) better, indistinguishable, or worse 
than the method in the column, respectively

PSNR SSIM FSIM IFC VIF NQM VSNR MSSSIM IWSSIM

PSNR - - - 1 - 1 - 1 - - - 0 0 0 0 - 0 - - - 1 - - - 0 0 0
SSIM 0 - 0 - - - 0 1 0 0 - 0 0 0 0 0 0 0 0 - - 0 - 0 0 0 0
FSIM - 0 - 1 0 1 - - - - 0 - 0 0 0 - 0 - - 0 1 - 0 - 0 0 0
IFC - - 1 1 - 1 - 1 - - - - - 0 - 1 - - - - 1 1 - 1 - 0 -
VIF 1 1 1 1 1 1 1 1 1 - 1 - - - - 1 - 1 1 1 1 1 1 1 - - -
NQM - 1 - 1 1 1 - 1 - 0 - - 0 - 0 - - - 0 - 1 - - - 0 - 0
VSNR - - 0 1 - - - 1 0 - - 0 0 0 0 1 - 0 - - - - - 0 0 0 0
MSSSIM - - - 1 - 1 - 1 - 0 - 0 0 0 0 - - - - - 1 - - - 0 0 0
IWSSIM 1 1 1 1 1 1 1 1 1 - 1 - - - - 1 - 1 1 1 1 1 1 1 - - -

Table 8   Average computation time per image for each FR-IQA method

Method PSNR SSIM FSIM IFC VIF NQM VSNR MSSSIM IWSSIM

Time (seconds) 0.0041 0.0300 0.1590 0.6070 0.6183 0.1755 0.0772 0.0089 0.3208
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of the results of studies using the FR-IQA in the evaluation 
of CT image quality in the past.

This study had several limitations. First, some FR-IQA 
methods require the setting of several parameters. We set the 
parameters for each FR-IQA method based on the values rec-
ommended in the original papers. Optimizing these param-
eters for medical images may improve the performance of 
the FR-IQA methods because these recommended values 
are for natural images. Second, the distribution of subjective 
assessment scores for the 210 distorted images was uneven. 
Figure 8 depicts a histogram of the subjective assessment 
scores. The volume zone was approximately 40, and the 
distribution was not uniform. Therefore, our results may 
have been strongly influenced by the distorted images near 
the volume zone. Finally, the distorted images used in this 
study were simulated artificially and may differ from actual 
clinical images. The noise in CT images follows a Gauss-
ian distribution [42]; therefore, we adopted Gaussian noise. 
Unlike artificial distortions, clinical images do not necessar-
ily exhibit uniform degradation throughout the entire image, 
and the degree of distortion may vary depending on the local 
area. Realistic distorted images are necessary; however, pre-
paring images containing inhomogeneous various degrees 
of known degradations is difficult.

Conclusion

The nine FR-IQA methods demonstrated excellent correlations 
with subjective assessment, suggesting that FR-IQA methods 
developed for natural images can be applied to CT images, and 
will support the reliability of the results of studies using the 
FR-IQA in the evaluation of CT image quality in the past. In 

particular, VIF demonstrated the highest performance and was 
the most useful method for assessing the quality of CT images.
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