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® Alphal-chimaerin mRNA was localized to neurons in postmortem human brain.
® Reduced mRNA levels of o1-chiamerin in the temporal cortex and hippocampus of AD.
® Expression of o2-chimaerin mRNA was not reduced in the temporal cortex of AD.
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Alphal-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase fam-
ily, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer’s disease,
but little is known about the role of «1-chimaerin. In this study, we investigated the expression and
localization of ¢ 1-chimaerin mRNA in postmortem human brains from patients with Alzheimer’s disease
and control subjects. In situ hybridization studies demonstrated that a1-chimaerin was expressed by
neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer’s
Alzheimer's disease disease cases, with the signal intensity dramatically decreased in patients with Alzheimer’s disease. Real-
o1-chimaerin time PCR analysis confirmed a significant reduction of o1-chimaerin mRNA expression in the temporal
Racl cortex of Alzheimer’s disease cases. In contrast, «2-chimaerin mRNA levels showed no significant dif-
ference between the groups. The present study showed reduced «1-chimaerin expression in the brain
of Alzheimer’s disease cases, suggesting a role in the upregulation of Rac1 activity during the disease
process.
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1. Introduction changes [4,5]. By inactivating Rac1, a1-chimaerin plays a signif-

icant role in the regulation of dendritic growth during neuronal

Alphal-chimaerin is a GTPase-activating protein (GAP) for Ras-
related C3 botulinum toxin substrate 1 (Rac1), a member of the
Rho small GTPase family [1,2]. Alphal-chimaerin is selectively
expressed in the brain, where its Rac1 GAP activity mediates Rac1
inactivation. Rac1 regulates actin polymerization, actin reorgani-
zation, cell migration, and cell cycle progression [3]. In neurons,
Rac1 mediates dendritic spine formation and other morphological
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development in the brain [6].

Alpha-chimaerin consists of two splice variants («1 and «2).
The o1 variant lacks the N-terminal SH2 domains and is more
abundant in the adult brain than during development, whereas
the o2 variant is mainly expressed in the developing brain and
testes [7,8]. Increased a1-chimaerin promotes the pruning of
dendritic branches and arbors, and «1-chimaerin overexpression
causes loss of spines in the mouse brain [6]. In cultured hip-
pocampus, o1-chimaerin inhibits the formation of new spines and
removes existing spines [9]. Conversely, the down-regulation of o1-
chimaerin increases protrusive activity from the dendrite, resulting
in an increased abundance of neurons with morphologically atypi-
cal spines [6]. Therefore, «1-chimaerin is thought to be a regulator
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of dendritic spine growth, branching, and morphology that exerts
its function by increasing synaptic activity via muscarinic acetyl-
choline receptors [6] and N-methyl-d-aspartate (NMDA) receptors
[9], leading to pruning of dendritic arbors for precisely selected
synaptic formation [6].

Alzheimer’s disease (AD) is the most common cause of demen-
tia associated with the accumulation of fS-amyloid (AfS) plaques
[10-13], formation of neurofibrillary tangles [14], and neuronal
death. In addition, synaptic loss is implicated as a major struc-
tural cause of cognitive dysfunction in AD [15], probably involving
loss or alterations of dendritic spine formation [16]. AfS oligomers
disrupt synaptic plasticity in vivo [ 17] and cause synaptic dysfunc-
tion in an animal model of AD [18]. A previous study has reported
that Rac1 activity is upregulated in the hippocampus of AD patients
[19]. However, little information is available about the expression
of «1-chimaerin in the brain of AD patients. In this study, we there-
fore investigated the expression and localization of a1-chimaerin
in postmortem brains of patients with AD and of age-matched,
neuropathologically normal controls at the mRNA level.

2. Materials and methods

2.1. Subjects

All subjects were from the Banner Sun Health Research Institute
Brain and Body Donation Program [20]. The tissue was processed
following previously described methods [21,22]. The clinicopatho-
logical data are summarized in Table 1.

For quantitative real-time PCR, total RNA was extracted from
the temporal cortex of seven sporadic AD cases (mean age + SD,
86.3 +4.8 years) and eight control subjects without neurological
disease (mean age +SD, 81.3 +4.8 years). The mean postmortem
delays for the AD cases and control subjects were 2.67 hand 2.51 h,
respectively.

For in situ hybridization histochemistry, we examined the hip-
pocampus and the temporal cortex of three sporadic AD cases
(meanage +SD, 71.7 +10.1 years) and three control subjects (mean
age +SD, 83.0 £ 4.4 years).

2.2. In situ hybridization

The hybridization probe was designed to detect the N-terminal
region specific to a1-chimaerin (bases 1-175 from the initiation
codon; accession number S75654). The N-terminal regions of «1-
chimaerin were subcloned into the pGEM-T easy vector (Promega,
Madison, WI, USA), and the digoxigenin-UTP-labeled sense and
antisense riboprobes were synthesized, according to the manufac-
turer’s protocol.

Frozen, fixed 40 pm sections of the postmortem brain were
mounted on RNase-free silane-coated glass slides (Dako Japan
Co., Ltd., Tokyo, Japan) and air-dried before immersion in diethyl
pyrocarbonate-treated phosphate-buffered saline (0.1 M, pH 7.4)
for 10 min. The sections were then treated for 10 min at room tem-
perature with proteinase K (5 g/ml) in 10 mM tris-HCl buffer (pH
8.0) containing 150 mM NaCl at 37°C, and then post-fixed with
4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) at room
temperature for 10 min. The sections were pre-hybridized for 2 h
at 37°C in a hybridization buffer [50% formamide, 5 x denhardt’s
solution, 3 x saline/sodium citrate (SSC), 0.5 mg/ml yeast tRNA,
and 0.5 mg/ml heat-denatured salmon sperm DNA]. The probes
were diluted in the hybridization buffer to a final concentra-
tion of 2pg/ml, and hybridization was performed for 16h at
60°C. After hybridization, the sections were washed for 2h
in 0.2 x SSC buffer at 60°C, followed by rinsing in 0.1 M tris-
HCI (pH 7.5) containing 150mM NaCl (NT buffer) for 5min at
room temperature. The sections were blocked in 1% skim milk
in NT buffer for 60min, and incubated overnight at 4°C with

Table 1
Clinicopathological data of study subjects.
Case # Pathological Age (years) Gender Postmortem Clinical diagnosis CERAD neuritic ~ Braak Analysis
diagnosis delay (h) and complications plaque score neurofibrillary
tangle stage
1 Control 81 F 3.0 Myocardial infarction, congestive A 11 qPCR
heart failure, renal failure
2 Control 78 M 2.7 Coronary artery disease, chronic, 0 Il qPCR
obstructive pulmonary disease,
congestive heart failure, diabetes
mellitus, hip bone fracture, cardiac
pacemaker
3 Control 82 F 2.0 Lung cancer, myocardiac infarction A Il qPCR
4 Control 73 F 1.5 Ovarian cancer 0 I qPCR
5 Control 85 F 2.5 Cardiac and respiratory failure, 0 11 qPCR
atrial fibrillation, cerebrovascular,
accident (right hemiplegia)
6 Control 78 M 1.7 Lung cancer, heart failure 0 I qPCR, ISH
7 Control 85 M 3.2 Congestive heart failure 0 Il qPCR, ISH
8 Control 88 F 3.0 Chronic renal failure 0 Il qPCR
9 Control 86 M 2.5 Renal failure, attrial fabrillation, 0 Il ISH
coronary artery disease, congestive
heart failure
10 AD 89 F 3.0 AD, osteoarthritis, anxiety, C \% qPCR
depression, aspiration pneumonia
11 AD 79 M 2.0 AD C \% qPCR
12 AD 89 F 3.0 AD bronchopneumonia C \% qPCR
13 AD 80 F 2.2 AD, parkinsonism C VI qPCR
14 AD 91 F 3.0 AD C \% qPCR
15 AD 87 M 3.0 AD parkinsonism C \% qPCR
16 AD 89 F 2.5 AD C VI qPCR
17 AD 61 F 2.5 AD, uterus cancer, bronchitis C VI ISH
18 AD 73 F 2.0 AD, atrial fibrillation, C \% ISH
cerebrovascular accident
19 AD 81 M 3.0 AD, cardiac and respiratory failure, C \% ISH

AD: Alzheimer’s disease, qPCR: quantitative polymerase chain reaction, ISH: in situ hybridization histochemistry.
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Fig. 1. In situ hybridization of «1-chimaerin mRNA in the temporal cortex of control subjects (A, C and D) and AD cases (B and E) using an antisense probe (A, B, D and E) or
a sense probe (C). (A) and (B): positive signals were detected in the cortex of both control subjects and AD cases. (C): no signals were detected using the sense probe with
the exception of nuclear staining in areas near the cortical surface of layer 1. (D) and (E): high magnification of the boxed area in layer 3 of a control (A) and an AD case (B).

Positive cells appear to be neurons. Scale bar=200 pwm in A-C, and 50 wm in D and E.

alkaline phosphatase-labeled anti-digoxigenin antibody (1:200;
Roche Diagnostics, Basel, Switzerland). The signal was detected
using the substrates nitroblue tetrazolium chloride and 5-bromo-
4-chloro-3-indolyl phosphate p-toluidine salt.

2.3. Quantitative real-time PCR

Five micrograms of each total RNA sample was reverse-
transcribed for first-strand cDNA synthesis using 80 units of
superscript II (Gibco BRL, Gaithersburg, MD, USA) and 500 pmol of
oligo dT;,_1g (Amersham Biosciences Corp., Piscataway, NJ, USA).

The reaction mixture consisted of 1 x LC-FastStart mixture,
4mM MgCly, 0.5 wM of primer, and 200 ng of cDNA. We designed
a set of primers to amplify o1-chimaerin mRNA, but not o2-
chimaerin, and confirmed on agarose gels that the PCR product
was a single band. Real-time PCR primers for the reactions
were as follows: a1-chimaerin, 5-AAAATGCCATCCAAAGAGTCT-

3’ (sense, 2170-2190 in GenBank accession number
S75654) and 5'-GAAATTGTGAATCTTTTCATATTT-3'
(antisense, 2398-2421 in S75654); «2-chimaerin, 5'-

GGCTCTACTACGATGGCAAGC-3" (sense, 297-317 in Z22641)
and 5-CTGTAGAATCTCTCTCATCATGT-3' (antisense, 511-533 in
722641); B-actin, 5'-TGGTGGGCATGGGTCAGAAGGATTC-3' (sense,
172-196 in X00351) and 5-CATGGCTGGGGTGTTGAAGGTCTCA-3’
(antisense,  413-437 in  X00351); and MAP2, 5'-
CTGTAGCAGTCCTGAAAGGTGA-3' (sense, 454-475 in BC027583)
and 5-TGCTAGGGCAGGCTGAGCTGTATC-3’ (antisense, 718-741
in BC027583). Cycling conditions comprised an initial 10 min of
incubation at 95°C followed by 1-40 cycles of denaturation for
15s at 95°C, annealing for 8s at 54 °C for o1-chimaerin, for 5s at
56°C for o2-chimaerin, or for 5s at 58°C for B-actin and MAP2,
and extension for 15s at 72°C. Standard curves were obtained
from plasmids containing «1-chimaerin or a2-chimaerin cDNA.
According to the fit points method of lightcycler, we calculated
mRNA content using the standard curves. The expression levels
of a1- and «2-chimaerin mRNAs in neurons were normalized to
B-actin and MAP2, respectively. Statistical analysis was performed
using student’s unpaired t-test.

3. Results

3.1. a1-chimaerin mRNA was downregulated in the temporal
cortex of AD patients, as demonstrated by in situ hybridization

In situ hybridization detected «1-chimaerin mRNA in the tem-
poral cortex of both control subjects (Fig. 1A) and AD cases (Fig. 1B).

No signal was detected using the sense probe with the exception of
nuclear staining in areas near the cortical surface of layer 1 (Fig. 1C).
At high magnification, positive signals were localized to neurons
(Fig. 1D and E, supplementary Fig. S1). Although there was no dif-
ference in the localization of a1-chimaerin mRNA between control
subjects and AD cases, the signal intensity dramatically decreased
in the cerebral cortex of AD patients (Fig. 1B and E), compared with
those of control subjects (Fig. 1A and D).

In the hippocampus of control cases (Fig. 2), a1-chimaerin
mRNA was strongly expressed in the pyramidal neurons of the
cornu ammonis (CA) (Fig. 2A and B) and in the granule cells of
the dentate gyrus (DG) (Fig. 2C); however, this signal intensity was
dramatically decreased in pyramidal neurons (Fig. 2D and E) and
granule cells (Fig. 2F) of AD cases.

3.2. Reduced a1-chimaerin mRNA levels in the temporal cortex of
AD patients were confirmed by real-time PCR analysis

Real-time PCR was used to compare the expression levels
of a1-chimaerin mRNA between AD cases and control subjects
(Fig. 3). Statistical data are presented in Table 2. We used 200 ng
of cDNA from the temporal cortex for the real-time PCR, and calcu-
lated the contents according to a standard curve generated using
the a1-chimaerin plasmid. The expression levels of «1-chimaerin
mRNA in control subjects and AD cases were 1185.494+163.97 fg
(mean+SEM, n=8) and 263.75+134.12fg (mean+SEM, n=7),
respectively. When normalized to 8-actin and MAP2, «1-chimaerin
mRNA levels in the AD cases were reduced to 37.3% and 31.3%,
respectively, compared to control levels (P<0.01, Table 2 and
Fig. 3A).

We also examined the expression of «2-chimaerin mRNA using
real-time PCR. The relative expression levels of o2-chimaerin
mRNA in the control subjects and AD cases were 18.53 +£1.22
(mean +SEM, n=8) and 8.95+2.22 (mean =+ SEM, n=7), respec-
tively, with no significant difference detected between the

Table 2
Alpha-chimaerin mRNA expression levels in the temporal cortex of Alzheimer's
disease cases and control subjects.

Control (n=8) Alzeimer’s disease  P-value
a1-chimaerin/R-actin 0.50 + 0.08 0.18 + 0.04 0.0053"
«1-chimaerin /MAP2 553.09 + 70.00 173.1 £94.7 0.0060"
o2-chimaerin/B-actin 0.0051 + 0.0004 0.0058 + 0.0008 0.407
«2-chimaerin/MAP2 9.40 £+ 1.56 6.13 + 1.61 0.169

Values are presented as mean + SEM.
" P<0.01.
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Fig. 2. In situ hybridization of «1-chimaerin mRNA in the hippocampus of a control subject (A-C) and AD case (D-F). (A) and (D): at low magnification, positive signals were
mainly visible in the pyramidal layers of the cornu ammonis (CA) and granular cell layer of the dentate gyrus (DG) in both control subjects and AD cases. (B) and (E): high
magnification of the pyramidal layer of the CA2 region. (C) and (F): high magnification of the granular cell layer of the dentate gyrus. Signal intensity is reduced in the AD
case (D-F) relative to that in controls (A-C). Scale bar =200 pm in (A) and (D); 100 wm in (B, C, E and F).
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Fig. 3. mRNA expression levels of a1-chimaerin (A) and o2-chimaerin (B) in the temporal cortex of patients with AD (n=7) and control cases (n=38) using real-time PCR.
The mRNA expression levels of «1-chimaerin and o2-chimaerin are normalized to the B-actin and MAP2 mRNA levels. The mRNA expression level of «1-chimaerin, but not
«2-chimaerin, is significantly reduced in the temporal cortex of AD cases compared to controls. Results are presented as mean + SEM. Statistical analysis was performed

using student’s t-test: **P<0.01 vs. control cases.

groups after normalization to B-actin and MAP2 (Table 2 and
Fig. 3B).

4. Discussion

This study is the first to demonstrate the localization of «1-
chimaerin mRNA in the brains of human AD patients and control
subjects, and to compare the expression levels of a1-chimaerin
mRNA between temporal cortex samples from both groups. In situ

hybridization histochemistry demonstrated «1-chimaerin mRNA
in the temporal cortex neurons of both control subjects and AD
cases, with the AD brains showing a reduced signal intensity of
a1-chimaerin mRNA compared to controls. The neuronal local-
ization of w1-chimaerin is consistent with previous reports using
rats [2,7,8]. In the rat brain, o1-chimaerin mRNA is expressed
specifically in neurons and expression rapidly increases post-
natally [8], although interestingly, expression was high in the
cortex, including the entorhinal cortex and hippocampus, and
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the amygdala [8]. These regions are known to be vulnerable in
AD.

In agreement with the in situ hybridization results, the real-
time PCR analysis confirmed a significantly reduced expression
level of a1-chimaerin mRNA in the temporal cortex of AD brains
compared to controls. When the expression level was normalized
to that of MAP2 mRNA, o1-chimaerin mRNA expression was sig-
nificantly reduced in the AD brains. These results suggest that the
reduction of «1-chimaerin is not due simply to neuronal loss, but
that it could reflect a pathological mechanism.

When normalized to $-actin and MAP2, the expression of a2-
chimaerin mRNA showed no significant difference between the AD
cases and control subjects. These results are in good agreement
with a previous study using the rat brain [8], and suggest that o1-
chimaerin is the main form of this GAP protein in the adult brain.

The precise roles of w1-chimaerin in the pathology of AD are
not revealed in this study. However, there are several possibilities.
Synapse development and plasticity are controlled by Rho GTPase
regulatory proteins [23], and chimaerins are one class of Rho GAPs
with a GAP domain specific for Rac. GAPs are generally thought to
downregulate the activity of small GTPases such as Rac1, as active
GTP-bound forms become inactive GDP-bound forms. Therefore,
a reduction in a1-chimaerin would be expected to increase Racl
activity at that location. This is in agreement with a previous paper
showing that Rac1 activity was increased in the brain of AD patients
[19]. In addition, increased expression of Raclb, a constitutively
active splice variant of Rac1, increased only within neurons in AD
[24]. Taking together, these findings suggest that the alterations in
al-chimaerin and Rac1 in AD brains could be one of the mecha-
nisms underlying synaptic dysfunction.

The other possibility is that «1-chimaerin is associated in some
way with cyclin-dependent kinase 5 (Cdk5). Cdk5 is a neuron-
specific Rac effector [25], and «1-chimaerin exists in a functional
complex with Cdk5 in the brain [26]. Cdk5 is thought to be involved
in the phosphorylation and aggregation of tau protein, tangle for-
mation, and Af§ neurotoxicity in the brain of AD patients [27,28].
Thus, it will be of great interest to clarify the interaction between
o1-chimaerin and Cdk5.

5. Conclusion

In this study, we investigated the expression and localization
of a1-chimaerin mRNA in postmortem brains from patients with
AD and control subjects. In situ hybridization studies demonstrated
that o1-chimaerin was expressed by neurons in the temporal lobe
and the hippocampus, and staining intensity was reduced in AD
cases. Real-time PCR analysis confirmed a significant reduction
of a1-chimaerin mRNA expression in the brain of AD cases com-
pared to controls, while there was no significant difference in
a2-chimaerin mRNA levels between the groups.

Disclosure statement for authors

Dr. Thomas G. Beach is a paid consultant with GE Healthcare
and Avid Radiopharmaceuticals. The ethics committee at Shiga
University of Medical Science verified that appropriate approval
and procedures were used in this study including human subjects
('3#55).

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific
Research on Innovative Areas (“Brain Environment”) (26111709)
and (B) (2629002) from the Ministry of Education, Science, Sports
and Culture of Japan. We are grateful to the Banner Sun Health

Research Institute Brain and Body Donation Program of Sun City,
Arizona for the provision of human brain tissue. The Brain and
Body Donation Program is supported by the National Institute
of Neurological Disorders and Stroke (U24 NS072026 National
Brain and Tissue Resource for Parkinson’s Disease and Related
Disorders), the National Institute on Aging (P30 AG19610 Ari-
zona Alzheimer’s Disease Core Center), the Arizona Department
of Health Services (contract 211002, Arizona Alzheimer’s Research
Center), the Arizona Biomedical Research Commission (contracts
4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease
Consortium) and the Michael ]. Fox Foundation for Parkinson’s
Research.

Appendix A. Supplementary data

Supplementary data associated with this article can
be found, in the online version, at http://dx.doi.org/10.
1016/j.neulet.2015.02.013.

References

[1] C.Hall, C. Monfries, P. Smith, H.H. Lim, R. Kozma, S. Ahmed, V.
Vanniasingham, T. Leung, L. Lim, Novel human brain cDNA encoding a 34,000
Mr protein n-chimaerin, related to both the regulatory domain of protein
kinase C and BCR, the product of the breakpoint cluster region gene, J. Mol.
Biol. 211 (1990) 11-16.

[2] H.H. Lim, G.J. Michael, P. Smith, L. Lim, C. Hall, Developmental regulation and
neuronal expression of the mRNA of rat n-chimaerin, a p21rac GAP:cDNA
sequence, Biochem. J. 287 (1992) 415-422 (part2).

[3] E.E.Bosco, J.C. Mulloy, Y. Zheng, Rac1 GTPase: a Rac of all trades, Cell. Mol. Life
Sci. 66 (2009) 370-374.

[4] L. Luo, T.K. Hensch, L. Ackeman, S. Barbel, LY. Jan, Y.N. Jan, Differential effects
of the Rac GTPase on purkine cell axons and dendritic trunks and spines,
Nature 379 (1996) 837-840.

[5] AY. Nakayama, M.B. Harms, L. Luo, Small GTPases Rac and Rho in the
maintenance of dendritic spines and branches in hippocampal pyramidal
neurons, J. Neurosci. 20 (2000) 5329-5338.

[6] P.Buttery, A.A. Beg, B. Chih, C.A. Mason, P. Scheiffele, The

diacylglycerol-binding protein av1-chimaerin regulates dendritic morphology,

Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 1924-1929.

C. Hall, W.C. Sin, M. Teo, G.J. Michael, P. Smith, ].M. Dong, H.H. Lim, E. Manser,

N.K. Spurr, T.A. Jones, L. Lim, a2-chimerin an SH2-containing

GTPase-activating protein for the ras-related protein p21rac derivated by

alternate splicing of the human n-chimerin gene, is selectively expressed in

brain and testes ae2-chimerin an SH2-containing GTPase-activating protein
for the ras-related protein p21rac derivated by alternate splicing of the
human n-chimerin gene, is selectively expressed in brain and testes, Mol. Cell

Biol. 13 (1993) 4986-4998.

C. Hall, GJ. Michael, N. Cann, G. Ferrari, M. Teo, T. Jacobs, C. Monfries, L. Lim,

Alpha2-chimaerin a cdc42/rac1 regulator, is selectively expressed in the rat

embryonic nervous system and is involved in neuritogenesis in N1E-115

neuroblastoma cells, ]. Neurosci. 21 (2001) 5191-5202.

TJ. Van de Ven, H.M.A. VanDongen, A.MJ. VanDongen, The nonkinase phorbol

ester receptor alphal-chimerin binds the NMDA receptor NR2A subunit and

regulates dendritic spine density, J. Neurosci. 25 (2005) 9488-9496.

[10] D.J. Selkoe, The molecular pathology of Alzheimer’s disease, Neuron 6 (1991)
487-498.

[11] J.A. Hardy, G.A. Higgins, Alzheimer’s disease: the amyloid cascade hypothesis,
Science 256 (1992) 184-185.

[12] M. Citron, T. Oltersdorf, C. Haass, L. McConlogue, A.Y. Hung, P. Seubert, D.J.
Selkoe, Mutation of the beta-amyloid precursor protein in familial Alzheimer’s
disease increases beta-protein production, Nature 360 (1992) 672-674.

[13] J. Hardy, D.J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: progress
and problems on the road to therapeutics, Science 297 (2002) 353-356.

[14] C.Bancher, C. Brunner, H. Lassmann, H. Budka, K. Jellinger, G. Wiche, F.
Seitelberger, I. Grundke-Igbal, H.M. Wisniewski, Accumulation of abnormally
phosphorylated (precedes the formation of neurofibrillary tangles in
Alzheimer's disease), Brain Res. 477 (1989) 90-99.

[15] D.J. Selkoe, Alzheimer’s disease is a synaptic failure, Science 298 (2002)
789-791.

[16] M. Knobloch, .M. Mansuy, Dendritic spine loss and synaptic alterations in
Alzheimer’s disease, Mol. Neurobiol. 37 (2008) 73-82.

[17] D.M. Walsh, I. Kiyubin, ].V. Fadeeva, W.K. Cullen, R. Anwyl, M.S. Wolfe, M.
Rowan, Naturally secreted oligomers of amyloid f protein potently inhibit
hippocampal long-term potentiation in vivo, Nature 416 (2002) 535-539.

[18] C. Perez-Cruz, M.W. Nolte, M.M. van Gaalen, N.R. Rustay, A. Termont, A.
Tanghe, F. Kirchhoff, U. Ebert, Reduced spine density in specific regions of CA1
pyramidal neurons in two transgenic mouse models of Alzheimer’s disease, J.
Neurosci. 31 (2011) 3926-3934.

(7

[8

[9


http://dx.doi.org/10.1016/j.neulet.2015.02.013
http://dx.doi.org/10.1016/j.neulet.2015.02.013

24 T. Kato et al. / Neuroscience Letters 591 (2015) 19-24

[19] X. Zhu, AK. Raina, H. Boux, Z.L. Simmons, A. Takeda, M.A. Smith, Activation of
oncogenic pathways in degenerating neurons in Alzheimer disease, Int. ]. Dev.
Neurosci. 18 (2000) 433-437.

[20] T.G.Beach, L.I. Sue, D.G. Walker, A.E. Roher, L. Lue, L. Vedders, D.J. Connor, M.N.
Sabbagh, J. Rogers, The sun health research institute brain donation program:
description and experience, 1987-2007, Cell Tissue Bank 9 (2008) 229-245.

[21] T.G. Beach, L.L Sue, S. Scott, D.L. Sparks, Neurofibrillary tangles are constant in
aging human nucleus basalis, Alzheimer’s Rep. 1 (1998) 375-380.

[22] L. Tooyama, H. Sato, O. Yasuhara, H. Kimura, Y. Konishi, Y. Shen, D.G. Walker,
T.G. Beach, L.I. Sue, J. Rogers, Correlation of the expression level of C1q¢ mRNA
and the number of C1g-positive plaques in the Alzheimer disease temporal
cortex: analysis of C1qg mRNA and its protein using adjacent or nearby
sections, Dement. Geriatr. Cognit. Disorders 12 (2001) 237-242.

[23] KF. Tolias, J.G. Dumen, K. Um, Control of synapse development and plasaticity
by Rho GTPase regulatory proteins, Prog. Neurobiol. 94 (2011) 133-148.

[24] S.E.Perez, D.P. Getova, B. He, S.E. Counts, C. Geula, L. Desire, S. Coutadeur, H.
Peillon, S.D. Ginsberg, E.J. Mufson, Rac1b increases with progressive tau
pathology within cholinergic nucleus basalis neurons in Alzheimer’s disease,
Am. J. Pathol. 180 (2012) 526-540.

[25] M. Nikolic, M.M. Chou, W. Lu, B.J. Mayer, L.-H. Tsai, The p35/Cdk5 kinase is a
neuron-specific Rac effector that inhibits Pak1 activity, Nature 395 (1998)
194-198.

[26] R.Z. Qj, Y.-P. Ching, H.-F. Kung, ].H. Wang, a-chimaerin exists in a functional
complex with the Cdk5 kinase in brain a-chimaerin exists in a functional
complex with the Cdk5 kinase in brain, FEBS Lett. 561 (2004) 177-180.

[27] ].C. Cruz, L.-H. Tsai, A jekyll and hyde kinase: roles for Cdk5 in brain
development and disease, Curr. Opin. Neurobiol. 14 (2004)

390-394.

[28] L.-H. Tsai, M.-S. Lee, ]. Cruz, Cdk5: a therapeutic target for Alzheimer’s

disease? Biochim. Biophys. Acta 1697 (2004) 137-142.



	Alpha1-chimaerin, a Rac1 GTPase-activating protein, is expressed at reduced mRNA levels in the brain of Alzheimer's disease patients
	1 Introduction
	2 Materials and methods
	2.1 Subjects
	2.2 Inprotect protect unhbox voidb@x penalty @M  {}situ hybridization
	2.3 Quantitative real-time PCR

	3 Results
	3.1 alpha1-chimaerin mRNA was downregulated in the temporal cortex of AD patients, as demonstrated by inprotect protect unhbox voidb@x penalty @M  {}situ hybridization
	3.2 Reduced alpha1-chimaerin mRNA levels in the temporal cortex of AD patients were confirmed by real-time PCR analysis

	4 Discussion
	5 Conclusion
	Disclosure statement for authors
	Acknowledgements
	Appendix A Supplementary data
	References


