ログイン
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 医学科
  2. 放射線医学講座
  3. 学術雑誌掲載論文等(放射線医学講座)

A novel strategy to develop deep learning for image super-resolution using original ultra-high-resolution computed tomography images of lung as training dataset.

http://hdl.handle.net/10422/00013055
http://hdl.handle.net/10422/00013055
9f870ff7-b35e-47cc-a3ce-ba3ae151961d
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-08-11
タイトル
タイトル A novel strategy to develop deep learning for image super-resolution using original ultra-high-resolution computed tomography images of lung as training dataset.
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 Artificial intelligence
キーワード
言語 en
主題Scheme Other
主題 Cadaveric lung
キーワード
言語 en
主題Scheme Other
主題 Convolutional neural networks
キーワード
言語 en
主題Scheme Other
主題 Deep learning
キーワード
言語 en
主題Scheme Other
主題 Ultra-high-resolution computed tomography
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 KITAHARA, Hitoshi

× KITAHARA, Hitoshi

WEKO 3456
e-Rad 40402721
ORCID 0000-0002-2093-2572

KITAHARA, Hitoshi

Search repository
NAGATANI, Yukihiro

× NAGATANI, Yukihiro

WEKO 1884
e-Rad 80402725
ORCID 0000-0002-1110-963X

NAGATANI, Yukihiro

Search repository
OTANI, Hideji

× OTANI, Hideji

WEKO 2775
e-Rad 70510270

OTANI, Hideji

Search repository
NAKAYAMA, Ryohei

× NAKAYAMA, Ryohei

WEKO 8584

NAKAYAMA, Ryohei

Search repository
KIDA, Yukako

× KIDA, Yukako

WEKO 8524

KIDA, Yukako

Search repository
SONODA, Akinaga

× SONODA, Akinaga

WEKO 3137
e-Rad 00571051
ORCID 0000-0003-2410-6232

SONODA, Akinaga

Search repository
WATANABE, Yoshiyuki

× WATANABE, Yoshiyuki

WEKO 7911
e-Rad 20362733
ORCID 0000-0003-3906-3730

WATANABE, Yoshiyuki

Search repository
著者別名 北原, 均

× 北原, 均

WEKO 3456
e-Rad 40402721
ORCID 0000-0002-2093-2572

北原, 均

Search repository
永谷, 幸裕

× 永谷, 幸裕

WEKO 1884
e-Rad 80402725
ORCID 0000-0002-1110-963X

永谷, 幸裕

Search repository
大谷, 秀司

× 大谷, 秀司

WEKO 2775
e-Rad 70510270

大谷, 秀司

Search repository
木田, 友佳子

× 木田, 友佳子

WEKO 8524

木田, 友佳子

Search repository
園田, 明永

× 園田, 明永

WEKO 3137
e-Rad 00571051
ORCID 0000-0003-2410-6232

園田, 明永

Search repository
渡邉, 嘉之

× 渡邉, 嘉之

WEKO 7911
e-Rad 20362733
ORCID 0000-0003-3906-3730

渡邉, 嘉之

Search repository
抄録
内容記述タイプ Abstract
内容記述 Purpose:
To improve the image quality of inflated fixed cadaveric human lungs by utilizing ultra-high-resolution computed tomography (U-HRCT) as a training dataset for super-resolution processing using deep learning (SR-DL).
抄録
内容記述タイプ Abstract
内容記述 Materials and methods:
Image data of nine cadaveric human lungs were acquired using U-HRCT. Three different matrix images of U-HRCT images were obtained with two acquisition modes: normal mode (512-matrix image) and super-high-resolution mode (1024- and 2048-matrix image). SR-DL used 512- and 1024-matrix images as training data for deep learning. The virtual 2048-matrix images were acquired by applying SR-DL to the 1024-matrix images. Three independent observers scored normal anatomical structures and abnormal computed tomography (CT) findings of both types of 2048-matrix images on a 3-point scale compared to 1024-matrix images. The image noise values were quantitatively calculated. Moreover, the edge rise distance (ERD) and edge rise slope (ERS) were also calculated using the CT attenuation profile to evaluate margin sharpness.
抄録
内容記述タイプ Abstract
内容記述 Results:
The virtual 2048-matrix images significantly improved visualization of normal anatomical structures and abnormal CT findings, except for consolidation and nodules, compared with the conventional 2048-matrix images (p < 0.01). Quantitative noise values were significantly lower in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.001). ERD was significantly shorter in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.01). ERS was significantly higher in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.01).
抄録
内容記述タイプ Abstract
内容記述 Conclusion:
SR-DL using original U-HRCT images as a training dataset might be a promising tool for image enhancement in terms of margin sharpness and image noise reduction. By applying trained SR-DL to U-HRCT SHR mode images, virtual ultra-high-resolution images were obtained which surpassed the image quality of unmodified SHR mode images.
書誌情報 en : Japanese Journal of Radiology

発行日 2021-07-28
出版者
出版者 Springer Nature
ISSN
収録物識別子タイプ ISSN
収録物識別子 1867-1071
PMID
識別子タイプ PMID
関連識別子 34318444
PMCID
識別子タイプ URI
関連識別子 http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8315896/
関連名称 PMC8315896
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1007/s11604-021-01184-8
関連名称 10.1007/s11604-021-01184-8
権利
権利情報 © 2021. Japan Radiological Society.
資源タイプ
内容記述タイプ Other
内容記述 Journal Article
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 11:22:27.710492
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3